
Self-paced Learning in HPC Lab Courses
Christian Terboven

Chair for High-Performance Computing
RWTH Aachen University, Germany

terboven@itc.rwth-aachen.de

Julian Miller
Chair for High-Performance Computing
RWTH Aachen University, Germany

miller@itc.rwth-aachen.de

Sandra Wienke
Chair for High-Performance Computing
RWTH Aachen University, Germany

wienke@itc.rwth-aachen.de

Matthias S. Müller
Chair for High-Performance Computing
RWTH Aachen University, Germany

mueller@itc.rwth-aachen.de

ABSTRACT
In a software lab, groups of students develop parallel code using
modern tools, document the results and present their solutions. The
learning objectives include the foundations of High-Performance
Computing (HPC), such as the understanding of modern architec-
tures, the development of parallel programming skills, and course-
speci�c topics, like accelerator programming or cluster set-up.

In order to execute the labs successfully with limited personnel
resources and still provide students with access to world-class HPC
architectures, we developed a set of concepts to motivate students
and to track their progress. This includes the learning status survey
and the developer diary, which are presented in this work. We
also report on our experiences with using innovative teaching
concepts to incentivize students to optimize their codes, such as
using competition among the groups. Our concepts enable us to
track the e�ectiveness of our labs and to steer them for increasing
sizes of diverse students.

We conclude that software labs are e�ective in adding practical
experiences to HPC education. Our approach to hand out open tasks
and to leave creative freedom in implementing the solutions enables
the students to self-pace their learning process and to vary their
investment of e�ort during the semester. Our e�ort and progress
tracking ensures the achieving of the extensive learning objectives
and enables our research on HPC programming productivity.

KEYWORDS
HPC education, software lab, parallel programming, programming
e�ort, training productivity

1 MOTIVATION
With the intent to make the dedication of our chair–the High-
Performance Computing (HPC)–popular among students, to attract
the best and highly-motivated students, and in general to engage
with students early on and to foster their skills, we have created a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full
citation on the �rst page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/10

series of HPC software labs. These support a diverse group of stu-
dents in self-paced learning and are meant to accompany theoretical
education in the �eld of HPC with a practical component.

As a requirement to execute the labs successfully, we have to
be able to stem the course with very limited personnel resources.
Nevertheless, we want to give students the opportunity to work
on world-class HPC architectures. To support the students to reach
the given learning objectives, we developed a set of concepts to
motivate students and to track their progress. This also enabled our
research on HPC development productivity.

This paper presents our learning status survey and the developer
diary to track the student’s progress in achieving the learning
objectives, and our approach to enable the comparison of di�erent
HPC cluster architectures or parallel programming models. We also
report on our experiences with using innovative teaching concepts
such as using a competition among students to motivate them to
optimize their codes for performance and show the opinions that
students have towards these concepts.

Thus, the paper is structured as follows: In Section 2, we de-
scribe the structure and content of three di�erent kinds of software
labs that we have conducted at the HPC chair of RWTH Aachen
University. Section 3 summarizes the learning objectives of our
labs–classi�ed into general and course-speci�c goals. To motivate
our students and increase the success rate, we have created var-
ious stimuli that are presented in Section 4. Section 5 covers the
methodology on how we track development e�ort and progress.
In Sections 6 and 7, we evaluate the software labs in terms of ob-
tained knowledge, training productivity and programming models,
as well as students’ feedback based teaching evaluations. Finally,
we conclude in Section 8.

2 HPC SOFTWARE LABS
Within the Computer Science curriculum at RWTH Aachen Uni-
versity, a software lab is a mandatory part of Bachelor studies and
expected to be completed in the 4th or 5th semester. It teaches
practical skills. As part of the actual work within a software lab,
students have to come up with a precise outline of the task at hand,
develop code using modern tools, document the results and prepare
a �nal presentation. Special emphasis is put on the experience to
work in a group, including the challenging tasks to self-organize the
development project throughout the semester. At RWTH, students
have the opportunity to select from 10 to 15 di�erent software labs
that are o�ered each semester. These span a wide range of topics,

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 61



covering the whole computer science domain at RWTH. While the
students are not expected to have prior knowledge in the particular
topic of a given software lab, they might have obtained knowl-
edge based on their individual selection of optional courses. This
diversity requires a �exible and self-paced approach towards HPC
education. The following provides our concepts and experiences of
the three di�erent labs regularly carried out at our institute.

The �rst lab is called Parallel Programming Models for Applica-
tions in the Area of High-Performance Computation (PModels lab).
Each group has to parallelize a serial code given as skeleton of
a Conjugate Gradient (CG) solver for sparse matrices with three
di�erent parallel programming models on di�erent hardware archi-
tectures. In the past, these were OpenMP for CPUs, and CUDA and
OpenACC for GPUs. The di�erent student groups start each with
another programming model so that (amongst others) the chance
to copy performance tuning steps from others is minimized. Before
starting the course, the students get a basic introduction to these
programming models. Then, they will work independently usually
starting with a performance analysis (using corresponding tools)
and investigating the hotspot of the application. It is key to e�-
ciently parallelize this hotspot, i.e. the sparse matrix-vector product,
to achieve good performance. For grading, basic parallel versions
with reasonable performance are su�cient. However, as part of the
competition, students are strongly encouraged to continue their
performance tuning and apply tools and performance engineer-
ing of their codes until the end of the semester. This also includes
thinking about (and implementing) performance models, new data
structures for sparse matrices, minimization of data transfers, or
other solutions to improve convergence of the solver. The �nal
results are evaluated with respect to overall solving time for a given
matrix.

The second lab is titled Parallel Programming for Many-Core ar-
chitectures with OpenMP (OpenMP lab) that is o�ered every summer
term. Each group has to solve three tasks and provide implementa-
tions with the parallel programming model OpenMP. In all tasks,
the students are encouraged to use performance and correctness
tools to analyze their intermediate and �nal solution. Task one is the
parallelization of a sparse-matrix-vector-multiplication. The identi�-
cation of the loop that has to be parallelized and the implementation
of a �rst-parallel version is rather simple, but the main challenge is
to achieve a load balance among the participating threads since the
non-zero entries are irregularly distributed among the matrix. Thus,
the students have to identify that the number of nonzero elements
has to be the same for each thread, not the number of rows in the
matrix. Further improvements of the execution performance have
to be achieved by enabling SIMD vectorization and aligned alloca-
tion of the data. Task two is a merge-sort code, for which tasking
has to be employed due to the recursive nature of the algorithm.
Again, a �rst-parallel version can be implemented with little e�ort,
but the challenge is to �nd a cut-o� strategy to limit the overhead
induced by the recursion. Both tasks have to be implemented for a
many-core architecture with two di�erent kinds of memory, namely
regular DDR memory and high-bandwidth memory, and the stu-
dents have to decide where the data elements have to be placed.
Furthermore, both kinds of memory exhibit NUMA characteristics
that have to be respected appropriately. In task three, a k-means
code has to be ported to an accelerator (GPU) architecture. In this

task, the e�ort to implement an initial-parallel version is higher,
because the o�oading requires more programming work and is
more error-prone than the constructs that have to be used in the
�rst two tasks. The key performance optimization challenge is to
minimize the data transfer between host and GPU. Furthermore, the
students have to understand which type of kernel and data volumes
are pro�table when o�oaded to a GPU and deliver a performance
improvement over the parallel execution on the host. In summary,
the solution of the three tasks teaches students the key skills to
program for contemporary HPC architectures and to perform per-
formance analysis and optimization on these architectures.

The third lab is titled HPC Cluster Challenge (Cluster lab) and is
o�ered every winter term. Each group receives a box of hardware
with the task to construct a cluster from its contents. Afterwards,
they have to parallelize and optimizing a Jacobian solver code aim-
ing towards fully utilizing their respective cluster. The four sets of
hardware for the four di�erent groups are very di�erent, so that
the groups’ experiences can be compared at the end of the soft-
ware lab. All groups receive the same network equipment, which
is pre-con�gured to allow connections to the university network
and, thus, enabling remote work. We provide an overview lecture
about what constitutes a cluster and provide general hints (not step-
by-step instructions) on how to con�gure the network, a shared
�lesystem, etc. The �rst group receives a set of Intel-based desk-
top PCs with NVIDIA GPU cards. In consequence, the code has
to exploit message-passing, multi-core and many-core parallelism.
Although this is the most standard hardware, we found the groups
are challenged to choose from the di�erent con�guration options
and descriptions found online. The second group receives a set of
NVIDIA Jetson boards, and again message-passing, multi-core, and
many-core parallelism has to be exploited and there are di�erent
possible software con�gurations. The third group receives a set of
Huawei Kirin boards. These are limited to message-passing and
multi-core parallelism because the programming options for the
so-called AI engine is not well-documented. The fourth group re-
ceives a set of 64-bit Banana Pi board, and again these are limited
to message-passing and multi-core parallelism, this time because
of limited capabilities of the graphics processor. In summary, the
hardware ranges from low-power ARM-based SoCs to desktops
equipped with GPUs. In all cases, the hybrid parallelization has to
employ message-passing between the nodes, threading with each
node and partly o�oading to exploit accelerator units. The results
are compared with respect to e�ort and price-performance.

Table 1 provides an overview of the three labs discussed in this
work with the number of participating students, the group size and
their average semester. It is noteworthy that we have improved
our material and methodology (cf. Section 5) over time by taking
feedback and new insights into account. To this end, we (still)
used manual developer diaries in summer 2015 instead of the more
advanced electronic approach introduced in Section 5. Furthermore,
we focused on oral attestations and �nal grades to evaluate the
students’ gained knowledge in summer 2015. In later semesters, we
added knowledge surveys (cf. Section 5) to extend and improve this
concept.

Volume 11, Issue 1 Journal of Computational Science Education

62 ISSN 2153-4136 January 2020



Table 1: Overviewof the three software labswith thenumber
of participating students, the group size and their average
semester.

Term Lab # Students # Groups Semester

Summer 2015 PModels 14 7 4.5
Summer 2016 PModels 12 6 4.1
Summer 2017 OpenMP 18 6 5.4
Winter 2017 Cluster 15 4 5.5
Summer 2018 OpenMP 17 5 4.4
Winter 2018 Cluster 15 4 6.4
Summer 2019 OpenMP 16 4 4.8

3 LEARNING OBJECTIVES
The learning objectives of our labs can be classi�ed into a gen-
eral and a course-speci�c set of goals. The generic foundation of
our HPC education lies in a thorough understanding of modern
multi- and many-core processor architectures including CPUs (with
various instruction set architectures) and accelerators. This foun-
dation is paired with theoretical knowledge including parallelism,
scalability and performance modeling to form analytical and assess-
ment skills for a wide range of hardware architectures. We build
upon this foundation by teaching software engineering skills and
best practices geared towards developing parallel software. These
include generic skills such as software requirements and design,
documentation, version control and development diaries (cf. Sec-
tion 5) as well as more speci�c tasks such as the correctness of
parallel programs, debugging and performance analysis. Further-
more, we foster self-organization and collaboration through team
work. Presentations of the results teach the students the visualiza-
tion and description of software solutions, performance results and
algorithms.

After completing the PModels lab, the students have a general
understanding of shared-memory and GPU programming using
di�erent parallel programming models, i.e., OpenMP, CUDA and
OpenACC. They know about methodologies to leverage the avail-
able parallelism and can clearly identify di�erences between low-
level and high-level programming approaches. Moreover, students
have an idea how to treat sparsity and how to apply optimization
techniques to typical numerical solver such as the CG.

The goals of the OpenMP lab are similar: The students have a
broad understanding of shared-memory and accelerator program-
ming with OpenMP and its various techniques to map parallelism
to hardware such as the concepts fork-join, tasking and accelerator
o�oading. Furthermore, the students are able to make profound
decisions on how to parallelize scienti�c tasks for speci�c hardware
architectures and optimize its hardware utilization.

The HPCCluster Challenge lab focuses on a broad understanding
of HPC clusters including the structure of clusters, networks, shared
storage and the cluster management. A key goal is the understand-
ing and analysis of power demands and energy e�ciency of clusters.
On the software side, the objective is to port and parallelize scien-
ti�c tasks to a target cluster and the design and implementation of

the task with suitable programming models (mainly OpenMP, MPI,
CUDA-C/C++, OpenCL).

4 STIMULI
We use various stimuli in our labs to increase the success rate
of the learning objectives while fostering creative solutions. We
found that some of the tasks are especially challenging to derive
from the objectives without providing a step-by-step guide which
would hinder self-pacing, creativity and planning aspects. Thus,
we de�ne generic tasks based on the expected outcome such as
‘implementing, parallelizing and optimizing a speci�c algorithm for
a target architecture’ and combine these with stimuli to increase
the achievement of the learning objectives while fostering creative
solutions.

The main stimulus we use is competition through group work in
which prices (HPC-related books) are awarded to the team which
achieves the fastest solution for all three tasks of the OpenMP lab,
or all three parallel CG code versions in the PModels lab. As was
outlined above, each lab partitions the students into three to �ve
groups. Each group has to solve the same tasks in the same order,
but the competition successfully ensures that solutions are not
freely exchanged between the groups. In all three software labs,
the solution of a task results in a parallel program for which in
the execution on the target architecture the time can be measured.
Each tasks o�ers a certain degree of freedom in the solution and
the execution parameters so that the performance results di�er
between the groups. The winning group is determined via the
formula-1 system: for each task, the fastest solution is awarded 25
points, the second fastest is 18 points, then 15 and 12 points. This
ensures a fair and thrilling competition even in the presence of one
group delivering a much better or worse solution than the rest in
one particular task. In no instance of the software labs we have
observed a single group clearly dominating the competition.

Figure 1 represents a typical result of the competition. It shows
the result of all three tasks from the competition in summer term
2019. For each of the four groups, the resulting runtime of 23 repeti-
tions is plotted. All four groups have delivered a working solution,
applied the correct techniques to achieve reproducible performance
with little variation, and achieved results in the same performance
class. The third group won the competition since they achieved the
highest throughput for task 1, the second-lowest runtime for task 2
and the lowest runtime for task 3.

Furthermore, we award creative solutions through presentation
time during the oral attestations and the �nal presentations with all
students. In order to expose the work of the HPC Cluster Challenge
software lab to the IT Center, which also operates national HPC
infrastructure, we selected a public and frequently visited space
in between two building parts for the setup the clusters. In conse-
quence, the clusters are on public displays and interested visitors
can see the systems in operation, include power measurements,
and the students at work. While this is certainly not comparable to
the public display of the Cluster Challenge activities at ISC or SC
conferences, the students reported that they like that atmosphere
after a certain time of getting used to it.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 63



Large Problem Size

1 2 3 4

12000

16000

20000

Group

P
er

fo
rm

an
ce

 (M
flo

p/
s)

95% CIs for the Mean Performance over 23 Executions of Task spmxv

(a) Task 1

Large Problem Size

1 2 3 4
0.25

0.50

0.75

1.00

1.25

Group

R
un

tim
e 

(s
)

95% CIs for the Mean Runtime over 23 Executions of Task merge-sort

(b) Task 2

Large Problem Size

1 2 3 4

0.500

0.525

0.550

0.575

0.600

Group

R
un

tim
e 

(s
)

95% CIs for the Mean Runtime over 23 Executions of Task kmeans

(c) Task 3

Figure 1: Competition results of the OpenMP lab in summer 2019.

5 EFFORT AND PROGRESS TRACKING
One of our main learning objectives is the ability to document and
present software projects in an especially performance-oriented
context. These goals are coupled with our own motivation of inves-
tigating the progress of the students and the e�ectiveness of our
labs. Therefore, we established a thorough data collection method-
ology which is used throughout the labs. While we do not grade
the quality of said data, we regularly collect the data and provide
students with feedback on how to improve their documentation
skills.

We use the collected data to steer the lab for increasing sizes
of divers groups of students as well as to develop and assess inno-
vations in teaching techniques. The main output of our teaching
curses is knowledge obtained as measured by the degree of achieved
learning objectives while the input (cost) is the e�ort invested by
the students in completing the course. Thus, the overall training
productivity TP is quanti�ed by Degree of achieved learning objectives

Training e�ort .
Furthermore, the data supports research into programming pro-
ductivity on a increasingly heterogeneous set of computing hard-
ware and programming models. The main output is hereby the
achieved performance of the implemented parallel software: pro-
gramming productivity PP =

Achieved performance
Training e�ort . For better com-

parison among a cohort, we typically normalize the obtained data.
The following provides our methodology for collecting the three

main productivity metrics knowledge, performance and training
e�ort. The learning objectives include propositional knowledge
obtained through preparational and supplemental materials such
as programming courses, lectures1, literature, best practice guides,
etc. and procedural knowledge obtained through completion of
design, implementation, programming etc. tasks. We use knowl-
edge surveys (KS) [4, 7] where students rate their con�dence in
solving tasks on a three-point scale to quantify the changes in
knowledge. This allows for a much higher assessment through-
put than in traditional tests and KS provide a comprehensive self-
assessment to the students. We assess our set of learning objectives
with 40–50 tasks (approx. 30 minutes to answer) which has shown
to be preferable regarding the overhead for the students and their
participation rates. The KS are combined with oral attestation to
capture additional learning objectives such as team-oriented skills,

1See the list of courses and lectures of the HPC group of the RWTH Aachen University:
https://www.i12.rwth-aachen.de

software-engineering methods and decision processes. The result-
ing con�dence ratings of the KS are combined with average grades
from all oral attestations (typically 2–3 over the course of the lab).

The performance of the software is typically captured by run-
time or throughput on a speci�c system. Hereby, the system con-
sists of pre-de�ned types of HPC cluster nodes for the OpenMP
and PModels lab or the self-built cluster for the Cluster lab. The
students may use all available resources of the system towards
their performance goals. To increase the reliability of the collected
performance data, we use multiple benchmark repetitions coupled
with mean and standard deviations. To simplify the data collec-
tion, we provided run scripts, make�le targets and data collection
spreadsheets.

The cost of the training is the e�ort in person-hours which con-
sists mainly of the time attending the lab and the development ef-
fort for completing the task(s). While the attendance time is clearly
de�ned, lots of the development is carried out outside the lab’s
presence hours. Thus, we use development diaries to record the
quantity and type of e�ort carried out by the students. To maxi-
mize the accuracy and comparability of the data while minimizing
the intrusion of the data collection, we develope the electronic de-
velopment diary E�ortLog2 [6]. It uses strict input forms, precise
questionnaires and �xed intervals (60-minutes has proven well)
to achieve highly accurate data. Large e�orts were recently put
into increasing the usability of the tool which include a simpli�ed
layout, auto-completion, noti�cations to further improve data qual-
ity and summaries of the current project including performance
results. Moreover, experience has shown that an operating system
agnostic implementation with a minimal set of dependencies is
key for the usability of the tool. The recorded e�ort data is related
to the achieved performance by reminding the students to collect
performance data and append it to the development activities. The
resulting data contains the development of the achieved perfor-
mance over the development e�ort as shown in the evaluation in
Chapter 6. The main challenge of the tool is that it is currently
not well-integrated into the typical development tool chain of the
students. Harrell et al. [1] target this challenge by integrating data
collection into git hooks. While this method promises high adaption
through commonly used tooling, the accuracy of this method needs
to be investigated further especially for student setups where we
have observed that version control is often used sparsely and with
low commit frequency. We intend to investigate the integration of
2The sources are publicly available on Github: https://github.com/RWTH-HPC/e�ort-
log

Volume 11, Issue 1 Journal of Computational Science Education

64 ISSN 2153-4136 January 2020



Table 2: Overview of the collected knowledge data during
the OpenMP lab in summer 2018 and 2019. A KS rating of 3
means the ability to answer the question for grading pur-
poses and 1 means not answerable by the trainee.

2018 2019

pre-KS post-KS pre-KS post-KS

Mean 1.97 ± 0.22 2.40 ± 0.30 1.32 ± 0.27 2.35 ± 0.33
Median 1.95 2.40 1.20 2.40

such tools or the combination of both kind of tools into a future
version of our labs.

6 EVALUATION OF THE LABS
This section provides an overview of the results obtained with the
data collected during the labs including investigations into the ob-
tained knowledge and training productivity, as well as, di�erences
in parallel programming models. The obtained knowledge is mainly
captured by knowledge surveys carried out before and after the lab
as described in Section 5. The participation is voluntarily and does
not contribute to the grading of the labs. This protects the privacy
of the students but often leads to incomplete data sets. Therefore,
only the meaningful data is discussed which was obtained from
the OpenMP labs in summer 2018 and 2019. We collected 19 valid
surveys (6 people �nished both pre- and post-KS) in summer 2018
and 12 valid surveys (4 people �nished both pre- and post-KS) in
summer 2019. The observed mean, median and standard deviations
are provided in Table 2. The labs show to be very e�ective in achiev-
ing the learning objectives by a large increase in the con�dence
rating of the post-KS over the pre-KS for both labs. To investigate
statistical signi�cance of this data, we applied one-sided Wilcoxon
signed rank tests to the collected data of people completing both
pre- and post-KS. It shows statistically signi�cant increases in the
knowledge of the students with p-values of 0.00014 and 0.01046 for
the OpenMP labs 2018 and 2019 respectively.

The collected productivity data of the students opens up wide
areas of research into HPC programming productivity such as the
estimation of software costs of HPC projects. While most of this re-
search is ongoing and will require more data, some early results can
be found in [2, 3, 6]. Figure 2 provides an example for the analyses
carried out on the productivity data collected during the OpenMP
lab in summer 2019. It shows the normalized performance (in rela-
tion to the best-e�ort solution) over the normalized development
e�ort (in relation to each group’s total e�ort). The anonymized data
is provided by four groups of students for three tasks. It shows two
distinct developments of the performance over the e�ort: A linear
increase and a step-wise increase in performance. Linear increases
are typical for groups working on small, incremental changes or
only parts of the code which can lead to missed tuning opportuni-
ties. The collected data aids in identifying these groups early-on
and supporting them in identifying the main performance limiters.
Step-wise increases are often observed in groups who radically
change parts of their code, algorithm or their launch con�guration.
A few of these changes (1–2 for these small projects) often lead to

Figure 2: Achieved performance over the development e�ort
of n = 12 solutions during the OpenMP lab.

OpenMP OpenACC CUDA
OpenMP 0.6812 0.0737
OpenACC 0.0737 0.0210
CUDA 0.0161 0.2598

runtime

effort

Figure 3: p-values of one-sidedWilcoxon rank sum test with
respect to students’ development e�ort (upper triangle) and
runtime (lower triangle) [5]. Signi�cant di�erences (on a 5%
signi�cance level) are marked in grey. Results are based on
(valid) data, i.e. 11 student teams, from the PModels labs.

large performance increases while most of the changes do not pro-
vide performance bene�ts. Our research focuses on modeling these
functions, the understanding of the triggers for a sharp change and
estimation methods.

To this end, it is important to also investigate di�erent impact
factors on development time and runtime. For example, results from
the PModels labs show that the choice of the parallel programming
model may a�ect the productivity [5]. Figure 3 illustrates the signif-
icant di�erences between OpenMP, OpenACC and CUDA in terms
of development e�ort (upper triangle) and runtime (lower triangle).
It expresses corresponding p-values in the way that the row item is
signi�cantly lower than the column item (on a 5 % signi�cance level)
where results are based on the one-sided signedWilcoxon rank sum
method. We �nd that the e�ort to use OpenACC is signi�cantly
lower than the one needed for CUDA programming. In contrast,
the runtime achieved when using CUDA is signi�cantly lower than
with OpenACC. For the comparison of other programming models,
we cannot draw any conclusions with this data. Nevertheless, this
kind of evaluation of software lab data supports the hypothesis that
parallel programming models a�ect productivity results so that this
factor should be kept �xed for future investigations of other impact
factors.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 65



Table 3: Teaching evaluation results averaged over all our
software labs (except winter 2017 and summer 2019). BG =
necessary background knowledge available, SOL = able to
solve exercises alone or contribute to solutions in a group,
MOT = exercises motivate student to solve them. Results
given as percentage of students answering the questionwith
1 = strongly agree, ..., 5 = strongly disagree.

scale BG [%] SOL [%] MOT [%]

n 69 71 69

1 37.7 67.6 47.8
2 34.8 23.9 33.3
3 15.9 7.0 14.5
4 5.8 1.4 2.9
5 5.8 0 1.4

average 2.09 1.45 1.82

7 STUDENT FEEDBACK (BASED ON
TEACHING EVALUATIONS)

To investigate whether our teaching concepts appeal to the stu-
dents, we take students’ feedback into account. For that, we use
the results of the o�cial teaching evaluations that RWTH Aachen
University implements for each course at the end of a semester.
These teaching evaluations consist of three main parts: statistical
information, questions on a Likert scale (mostly ranging from 1 =
strongly agree to 5 = strongly disagree), and free-form �elds where
students have the chance to mention anything that they liked and
disliked about the course. Since the questions in all lab teaching
evaluations are (mostly) the same, we can easily average or aggre-
gate the results over all our software labs. The only exceptions are
the evaluations in winter 2017 and summer 2019 where some of
the questions did not appear. Thus, these questions have a reduced
population (cf. the corresponding values of n). During our software
labs, the students get a dedicated time slot to �ll out the correspond-
ing questionnaires. Nevertheless, participation is voluntary so that
the number of responses n may di�er for each question. For this
evaluation, we focus on questions that may re�ect the e�ective-
ness of our teaching concepts (instead of presenting the complete
results).

In our seven labs, we supervised 107 students from which 103
took part in the teaching evaluation. These students are mostly,
i.e. 87 %, in their second or third year of the Bachelor program in
computer science. Furthermore, 72.5 % of the voting students, i.e.,
students who rated the question with one and two, denoted that
they have the necessary background knowledge to complete this
course where the average scoring is at 2.09 (cf. BG in Table 3). Thus,
we assume that the students’ feedback stems mainly from their
experiences gained throughout our software labs—instead to their
(missing) pre-knowledge.

First, we evaluate the overall concept of our software labs. Here,
the students have rated the PModels lab on average with 1.8 and
1.5 in summer 2015 and summer 2016, respectively. The OpenMP

Table 4: Teaching evaluation results aggregated aver all our
software labs. Answers to the questions what students par-
ticularly liked or disliked, respectively, about the lab (in
free-text form). Top three answers are presented if they have
more than one vote.

like dislike

topic # topic #

independent working/�exibility 11 unclear goal 14
concept of tasks 7 little instructions 11
competition 6

lab was scored on average with 1.4 in summer 2017, with 1.2 in
summer 2018, and 1.6 in summer 2019. The Cluster lab has been
rated with 1.7 in winter 2017 and 1.9 in winter 2018. For comparison,
we (only) have the average scores across all courses within the
computer science department at RWTH Aachen University (for
2016 and 2017) available. In summer 2016, this overall average was
at 1.8, in summer 2017 at 2.0, and, in winter 2017 at 1.9. To this end,
our corresponding software labs are better rated than the average.
Nevertheless, this interpretations should be taken with care since
the computer science average also includes (compulsory) lectures
that usually score worse than labs or seminars.

Getting more speci�c, we look at the feedback for our concept of
tasks. 81.2 % of the voting students state that the exercises motivate
them to solve the tasks. The corresponding question is rated with
an average score of 1.82—as given by MOT in Table 3. Moreover,
seven students particularly praise this concept in the free-form
comments of the questionnaire (cf. Table 4). The competition as part
of the exercises concept is explicitly mentioned positively six times.
Contrarily, the fourteen comments that the goals of the software
labs are not clearly given (cf. Table 4) is thought-provoking. Thus,
we are continuously improving our corresponding material and
goal statements without limiting the student’s creative freedom in
solving the tasks.

Finally, we investigate the concept of independent working and
self-paced learning. From the free-text comments in Table 4, we see
that it is received with mixed feelings. Eleven students particularly
mention that they like the independent working and the �exibility
that comes with self-paced learning. On the other hand, eleven
students state that they do not like working without detailed in-
structions and developing (performance tuning) steps themselves.
Assuming di�erent learning types and the fact that students are not
very familiar with this way of working through other courses, we
still �nd these results a balanced relationship. This is especially true
considering that 91.5 % of the voting students rated that they were
(still) able to solve the exercises alone or contribute to solutions in a
group (cf. SOL in Table 3) with an extremely good average score of
1.45. Correspondingly, 94.4 % of the voting students �nd the degree
of di�culty appropriate (cf. Table 6).

Overall, students workmostly between one and �ve hours for the
software lab outside of the classroom sessions. Taking the respective
median from the di�erent time intervals in Table 5, this comes to
an average of 4.1 hours. As comparison, this is more than double

Volume 11, Issue 1 Journal of Computational Science Education

66 ISSN 2153-4136 January 2020



Table 5: Teaching eval-
uation results averaged
over all our software
labs. Time for prepara-
tion and follow upwork
given as percentage of
students answering the
question (n = 99).

time [%]

< 1 hr 0
1 to 3 hrs 26.3
3 to 5 hrs 49.5
5 to 7 hrs 18.2
7 to 9 hrs 3.0
> 9 hrs 3.0

Table 6: Teaching evalu-
ation results averaged
over all our software
labs (except winter
2017 and summer 2019).
Degree of di�culty
reported, given as per-
centage of students
answering the question
(n = 71).

degree [%]

appropriate 94.4
too di�cult 5.6
too easy 0

the time that students spend for exercises attached to regular HPC
lectures taking place in the same semesters as the labs. Since grading
does not require the best performing code version, these results
indicate that students make use of the provided �exibility and are
motivated to spend extra time for scoring well in the competition.

Given the students’ feedback from the o�cial teaching evalu-
ations, we conclude to continue with our concept of self-paced
learning while improving our material, e.g., with respect to elabo-
rating on the goals of the software labs.

8 CONCLUSION
Software labs are e�ective in adding practical experiences to the
HPC education and in enabling access to and hands-on experiences
on world-class HPC systems. Our approach to hand out open tasks
and to leave creative freedom in implementing the solutions en-
ables the students to self-pace their learning process and to vary
their investment of e�ort during the semester. These conclusions
are also supported by students’ feedback given through teaching
evaluations. Our e�ort and progress tracking ensures the achieving
of the extensive learning objectives and enables our research on
HPC programming productivity.

REFERENCES
[1] Stephen Lien Harrell, Joy Kitson, Robert Bird, Simon John Pennycook, Jason Sewall,

Douglas Jacobsen, David Neill Asanza, Abaigail Hsu, Hector Carrillo Carrillo,
Hessoo Kim, et al. 2018. E�ective performance portability. In 2018 IEEE/ACM
InternationalWorkshop on Performance, Portability and Productivity in HPC (P3HPC).
IEEE, 24–36.

[2] Julian Miller, Sandra Wienke, Michael Schlottke-Lakemper, Matthias Meinke, and
Matthias S Müller. 2018. Applicability of the software cost model COCOMO II to
HPC projects. International Journal of Computational Science and Engineering 17,
3 (2018), 283–296.

[3] Marco Nicolini, Julian Miller, Sandra Wienke, Michael Schlottke-Lakemper,
Matthias Meinke, and Matthias S Müller. 2016. Software cost analysis of GPU-
accelerated aeroacoustics simulations in C++ with OpenACC. In International
Conference on High Performance Computing. Springer, 524–543.

[4] Edward Nuhfer and Delores Knipp. 2003. 4: The knowledge survey: A tool for all
reasons. To improve the academy 21, 1 (2003), 59–78.

[5] Sandra Wienke. 2017. Productivity and Software Development E�ort Estimation in
High-Performance Computing; 1. Edition. Dissertation. RWTH Aachen University,
Aachen. https://doi.org/10.18154/RWTH-2017-10649 Apprimus Verlag, Published
on the publication server of RWTH Aachen University 2018.

[6] Sandra Wienke, Julian Miller, Martin Schulz, and Matthias S Müller. 2016. Develop-
ment e�ort estimation in HPC. In SC’16: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis. IEEE, 107–118.
[7] Karl R Wirth and Dexter Perkins. 2005. Knowledge surveys: An indispensable

course design and assessment tool. Innovations in the Scholarship of Teaching and
Learning (2005), 1–12.

A ARTIFACT DESCRIPTION: SELF-PACED
LEARNING IN HPC LAB COURSES

A.1 Abstract
This paper does not contain or rely on any computational results.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 67

https://doi.org/10.18154/RWTH-2017-10649

