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ABSTRACT
Giving students a good understanding how micro-architectural ef-
fects impact achievable performance of HPC workloads is essential 
for their education. It enables them to find effective optimization 
strategies and to reason about sensible approaches towards better 
efficiency. This paper describes a lab course held in collaboration 
between LRZ, LMU, and TUM. The course was born with a dual 
motivation in mind: filling a gap in educating students to become 
HPC experts, as well as understanding the stability and usability 
of emerging HPC programming models for recent CPU and GPU 
architectures with the help of students. We describe the course 
structure used to achieve these goals, resources made available to 
attract students, and experiences and statistics from running the 
course for six semesters. We conclude with an assessment of how 
successfully the lab course met the initially set vision.

KEYWORDS
High Performance Computing, Computer Architecture, Accelerator 
Architectures, Computer Science Education

1 INTRODUCTION
As Tier-0 compute centers in Europe move towards exascale, the ed-
ucation of students and users alike is gaining significant importance 
in order to be prepared to utilize the potential of these systems.
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Various valuable training materials and courses have been devel-
oped, including broad community training initiatives in the US (e.g.,
efforts in ECP [13, 14]) and Europe (e.g., activities in PRACE [8]
and European Union’s Horizon 2020 research and innovation pro-
gram). These programs mainly cover mainstream HPC program-
ming models, frequently target specific domains (e.g., ModSim or
AI) for researchers beyond computer science, and often focus on
platform-specific tools for better compute facility usage. A more
general education for computer scientists from the architectural
point of view is missing, which is, despite recent training methods
and approaches, often lacking even in advanced university curric-
ula. Those often stay either at the theoretical level, or focus only
on high-level programming aspects of HPC systems.

Based on our experience working with HPC end-users in our
compute center, we consider getting practical experience, in partic-
ular with focus on the micro-architecture of modern HPC platforms
and programming models, a key aspect in HPC education, espe-
cially for computer science students and future HPC experts. This
also must include architectural details, like differing processing
elements and complex memory hierarchies.

In 2020, we introduced a new practical lab course focusing on the
experimental evaluation of HPC architectures, called the BEAST
Lab, after the BEAST testbed at LRZwhich is used in the lab (BEAST
is short for Bavarian Energy, Architecture, and Software Testbed).
It is primarily targeted at Computer Science and Computer Engi-
neering (CS and CE) students and has a strong focus on micro-
architecture of modern HPC architectures and systems.

The BEAST Lab shares the spirit of the recent training methods
and programs [4, 5, 9, 12] in providing resource access to students.
Our primary teaching approach and educational strategy is to en-
able students to acquire a deep understanding ofmicro-architectural
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aspects of HPC platforms through practical experience on mod-
ern HPC platforms and experimental evaluation of their micro-
architectural properties. To reach this goal, BEAST1, the Bavarian
Energy, Architecture, and Software Testbed, which is the LRZ test en-
vironment with the latest computer technologies available, enabling
research and exploration of new computer technologies and (HPC)
systems, plays a central role. In addition, the BEAST Lab aims to
have a broader impact by enhancing collaborative research, utiliz-
ing specialized hardware, and involving students in HPC hardware
evaluation and programming, through a multi-institute structure
organized by LRZ, thereby complementing lectures and seminars
at co-organizing universities, the Technical University of Munich
and the Ludwig Maximilian University of Munich.

The BEAST Lab uses a multitude of diverse hardware platforms
available in BEAST with the intention of enabling insights by high-
lighting the architectural differences as well as the differences in
programming models designed to target this diverse hardware in
practice. Therefore, the course is structured with practical assign-
ments and projects requiring minimal implementation effort, but
focusing on experimental evaluations, that teach how to conduct
detailed performance analysis and interpret them. This enables
students to explore and understand the architectural differences
through their measurements. The assignments cover programming
experiments on compute-bound and memory-bound kernels on
CPUs and GPUs using common HPC node-level programming
models (OpenMP, CUDA, and HIP), instruction-level and memory
parallelism, branch prediction, and NUMA effects on CPUs.

The projects cover the same type of topics and experiments but
need more effort in programming, enabling multi-threading and
various optimizations such as low-level manual vectorization. These
projects target a selection of conventional and fairly new applica-
tions such as multigrid solver [20], matrix profile computation [17],
and interpolation kernels [18].

Finally, to assess the success of the lab course and to ensure that
the lab material stays aligned with the teaching goals, we establish
a survey for students, where the participants are asked to evaluate
whether the goals are met. This also helps the instructors to gradu-
ally improve the course over time. In addition to quality assurance,
the surveys serve as feedback from students on their experience
on various hardware, software, tools and programming models.
We collected these surveys over four semesters and discussed the
results in the paper, e.g., that students voted OpenMP offloading
the most intuitive and easy-to-learn model for GPU programming.

Overall in this paper, we make the following contributions:
• We discuss the benefits of the BEAST Lab from the perspec-
tive of organizing parties as well as students.

• We describe the teaching approach, including the course
structure, resources made available to students, assignments,
projects, and grading scheme.

• We summarize lessons learned from organizing the BEAST
Lab for six semesters and provide insights from student sur-
veys on experiences with various hardware and program-
ming models collected over four semesters.

1BEAST is a wordplay: the more systems are coming in, the more the testbed environ-
ment looks like a beast to tame to get results. The corresponding logo shows a lion
head as beast, relating to the lions in the Bavarian coat of arms (cf. Figure 1).

The survey shows that in most cases the students could explain
measurements on the specific architectures and that overall the
BEAST Lab helped the majority of students to properly evaluate
and better understand modern HPC architectures, making this a
highly successful lab course that has become a permanent offering.

2 MOTIVATION
The BEAST Lab was incepted with two primary goals in mind:
filling a practical gap in educating students to become HPC experts,
as well as acquiring experience and understanding the stability
and usability of emerging HPC programming models for recent
CPU and GPU architectures with the help of students. In addition to
these aspects, the BEAST Lab is also designed with a broader impact
in mind to strengthen the collaborative research between academic
institutes and the Leibniz supercomputing center in Munich.

Motivation for the Compute Center: Evaluation of modern HPC
hardware technologies and emerging HPC programming models is
a critical research area for the LRZ, especially in the era of the Cam-
brian explosion of computing and novel architectures [15]. This
research helps LRZ to acquire practical experience on the various
modern systems, technologies, and approachability of program-
ming models as well as the maturity of software and toolchains,
and gain expertise to provide users with suggestions, recommenda-
tions, and best practices on how to write sustainable parallel codes
for future generation machines in computing centers. However,
the extensive variety of modern architectures requires allocating
lots of internal resources. The BEAST Lab helps to attract, educate,
and engage new students in this research area (similar to [22]). We
received more than 20 inquiries from students to continue research
after participating in the BEAST Lab. Additionally, the BEAST Lab
helps motivate research teams and PhD candidates to engage in the
evaluation of modern HPC architectures. 30 researchers (mainly
PhD candidates) from the co-organizing universities are conducting
research on BEAST; 5 of them actively contribute to the develop-
ment of the BEAST Lab.

Motivation for Educators: The CS and CE study programs at TUM
and LMU provide lectures around computer architecture both on a
basic level in the first year of Bachelor as well as on a deeper level
as selective courses in Master tracks. The latter discusses concepts,
approaches, and design choices of the micro-architecture, mostly
covering CPUs on a theoretical level, such as pipelining, out-of-
order execution, or the memory hierarchy. The BEAST Lab helps to
fill the practical gap in CS students’ education regarding complex
concepts and intricacies in the micro-architecture of modern HPC
processors and accelerators. It drives understanding to observe the
performance differences of code variants in practice, backed by
discussion on the micro-architectural properties responsible for the
observed effects. Furthermore, the variety of architectures available
in BEAST allows for insightful comparisons, highlighting different
design choices.

Motivation for Students: For students, the lab course provides
the following benefits: 1) access to rather expensive, modern, and
often rare HPC hardware, 2) gaining practical hands-on experience
on these modern systems, and 3) engaging in state-of-the-art HPC
hardware and system software research after gaining experience in
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the BEAST Lab. Additionally, the BEAST Lab also features invited
talks by mainstream HPC vendors through which students can hear
a light vendor roadmap and an overview of cutting-edge hardware
and software technologies. We also provide a tour of the LRZ site,
including a visit to the infrastructure and the compute cube of
SuperMUC-NG, offering the students a unique chance to visit a
top-tier HPC system.

3 AVAILABLE INFRASTRUCTURE FOR LAB
To stay up to date with new architectures and components, to
contribute to the research in shaping the future of HPC systems,
as well as to educate future HPC experts, the LRZ has established
the “Future Computing” program funded by the Bavarian State
Government: the cornerstone of this program is the development
of test environments with the latest computer technologies, the
“Bavarian Energy, Architecture and Software Testbed” or BEAST
for short (Figure 1).

The “Future Computing” Program: LRZ serves academic researchers
from Bavaria and Germany, mostly running scientific simulation
codes from natural sciences. The main goal of the “Future Com-
puting” program is to match available future technologies with the
demands of LRZ users, starting with a set of benchmarks that re-
flect the typical application mix running on current systems. These
benchmarks are then evaluated on the various architectures in the
BEAST system to get an understanding of future technology and
to answer questions like, “Which systems provide the best accel-
eration and efficiency for user codes considering a given budget?”.
The resulting insights are of significant help for the procurement of
upcoming systems. Another important goal is to check the claims of
vendors about the stability and versatility of the provided software
stack, including support for parallel programming models. Finally,
BEAST helps enable the porting/adaptation of in-house system
tools for new architectures.

Figure 1: BEAST Testbed system at LRZ.

3.1 BEAST Hardware
Our lab course uses BEAST as the main education resource and
provides the students with access to the latest HPC processors and
accelerators. Through the access and working on BEAST testbed,
students get a chance to work on processors and accelerators with
similar architecture and capabilities to the top systems in Top500
list [6], including Frontier, Fugaku, LUMI, and Leonardo. The BEAST
testbed offers a variety of architectures from different vendors and

exposes different instruction sets. However, in the lab course, the
following systems are used intensively.

Intel Icelake + Volta 100: Each node of this type features a two-
socket Intel Xeon Platinum 8360Y CPUs with an Icelake micro-
architecture. 72 cores are distributed over the two sockets (in two
NUMA domains), where each is equipped with one NVIDIA Tesla
V100 GPU (to be moved to A100 GPUs in the upcoming semester).
We are providing access to two nodes of this type to our students.

ARM Thunder X2 + Volta 100: The second system type consists
of two nodes with Thunder X2 CN9980 ARM CPUs. Each has two
sockets with 32 cores per socket and four-way hyperthreading. Two
V100 NVIDIA GPUs are connected to each node.

AMD Rome + AMD MI100: The third system type features two
nodeswithAMDEPYC 7742 RomeCPUs of Zen2micro-architecture,
each containing 64 cores distributed on two sockets. Each node
is equipped with two AMD MI100 GPUs (MI50 GPUs were used
in the early stages of the lab course). In the upcoming semesters,
we are moving towards using AMD Milan systems with the Zen3
micro-architecture and AMD MI200 GPUs.

Fujitsu A64FX:. The fourth system features Fujitsu A64FX nodes
with 64-bit Arm architecture with 512-bit vector implementation
of ARMv8 SVE SIMD instruction set extensions. Each node has 48
cores distributed on 4 NUMA domains and a total of 32 GB HBM
memory. There is no simultaneous multi-threading support.

3.2 BEAST Software Environment
BEAST offers a similar environment, such as the production sys-
tems of LRZ, running SLES and a SLURM instance (the scheduler
is, however, not currently used in the lab as we allocate dedicated
machines). However, as BEAST is part of the LRZ research infras-
tructure, many researchers from Munich universities and internal
LRZ users actively use the infrastructure, and consequently, the soft-
ware environment and configuration are subject to change based
on the needs of the researchers.

For this reason, we use Spack [11] to maintain a dedicated soft-
ware stack for the Lab course (of course, this stack can be reused
for other purposes as well). For instance, various compilers with
different backends, as well as tools (e.g., LIKWID), are installed us-
ing Spack. Other system software and tools, such as device drivers,
vendor compilers, and runtime libraries, are installed system-wide
and regularly updated. We also maintain a system-wide instance
of Data Center Data Base (DCDB) [16] to monitor the outbound
power consumption of nodes gathered from PDUs, which is used
in parts of the lab for experiments on energy efficiency.

4 THE LAB STRUCTURE AND TEACHING
APPROACH

Focus and Topic Coverage: BEAST Lab gives students opportuni-
ties to work on modern computing architectures. In particular, the
course helps students understand how micro-architecture technolo-
gies affect applications’ performance. The involved assignments and
projects in BEAST Lab cover various aspects, such as thread-level
parallelism, instruction-level parallelism, vectorization, memory
access patterns, caches-memory hierarchy, NUMA effects, branch
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prediction, and power consumption. These are integrated through
the general and experimental questions of assignments. Each assign-
ment is linked to a micro-benchmark referring to the aspects that
can impact overall performance. Students can perform experiments
on CPU and GPU architectures.

Teaching Approach: Our teaching approach is primarily based on
comparing architectural effects among different architectures. Stu-
dents are assigned to work in a group to complete the assignments
and projects. In each assignment, the groups work on a specific
topic and conduct experiments on BEAST hardware. Before con-
ducting experiments, they may have a conjecture about the results.
After experiments, each group of students summarizes the results
in a report and analyzes the performance evaluation of different
architectures. Students are expected to understand architectural
knobs, tuning, and optimization potentials affecting performance.
We do not require students to put extra effort into programming
from scratch. Instead, we provide the reference codes for the tasks
and instructions for conducting experiments on BEAST platforms.
With this approach, most of the time can be spent on investigating
different optimization ideas and analyzing performance results.

Another aspect to consider for reducing the programming ef-
fort on the student side is the programming models. These models
should make it easy to port from a sequential program to a parallel
version and port to different platforms and architectures in BEAST.
Therefore, we rely on OpenMP as the primary programming model
for teaching as it is almost the only vendor-neutral option support-
ing all the deployment and acceleration in all BEAST platforms,
including heterogeneous programming on GPUs and CPUs. Other
advanced and specialized programming models, such as CUDA, or
HIP, are also introduced to students. However, we consider these
as bonuses if students try to make an effort.

Lecture Organization & Assignment Structure. The lab is struc-
tured into two main parts: In Part 1, students hear lectures on
micro-architectural topics and work on weekly assignments. In
Part 2, they work on projects with more complex coding tasks.
Part 1 is organized with the weekly lab sessions as follows: ses-
sions begin with a short lecture on a specific topic related to the
upcoming assignment. This is followed by student presentations
covering their experience and results from the previous assignment.
In the end, we introduce the next assignment. In Part 2, the sessions
mainly include an introduction to the project, open group progress
discussions, and project presentations.

In the first lecture, we introduce the course organization and pro-
vide supporting materials to the students. This includes an overview
of the available hardware and their architecture, software environ-
ment, and compilers in BEAST. Further weekly lectures cover an
introduction to OpenMP, GPU architecture and OpenMP target
offloading, memory hierarchy of multi-core CPUs, pipelining and
branch prediction, and tools for tracing and profiling.

Overview of assignments: Following the first introductory lec-
ture, BEAST LAB begins with a warm-up assignment providing
instructions about accessing the system remotely and loading re-
lated libraries and compilers to familiarize students with the usage
of our platform. After the warm-up assignment, seven assignments
cover the mentioned topics. Each assignment is divided into smaller

Memory Bound Microbenchmark

Compute Bound Microbenchmark

CPU-vector-triad

CPU-mxm

Profiling Tools perf, likwid, ...

stride-vector-triad, linked-list traversal

Memory Bound on GPU

Compute Bound on GPU

GPU-vector-triad

GPU-mxm

ILP, branch-predict

Projects mg, mp, intp

Memory Hierachy & Latency Microbenchmark

ILP & Branch Prediction

Figure 2: Overview of assignments & projects in BEAST Lab.

parts with specific tasks and questions, supposed to incrementally
improve the understanding of the topics. Students are asked to
explain the performance of certain codes and modifications, sup-
ported by appropriate visualizations. The assignment overview and
order are shown in Figure 2. Their content is described as follows.

(1) Vector Triad on CPU. This assignment uses a vector triad
to show how the available bandwidth of different levels in the
memory hierarchy affects performance in memory-bound
applications in dependence on their arithmetic intensity. The
micro-benchmark is analyzed in sequential and parallel exe-
cution. Topics covered include compiler auto-vectorization,
caching, thread pinning and OpenMP loop scheduling effects,
NUMA effects and first touch policy.

(2) Vector Triad on GPU. Assignment 2 introduces students
to OpenMP offloading in the context of GPUs. The tasks
require analysis and evaluation of the GPU architecture with
a focus on the memory hierarchy, i.e., the OpenMP thread
and team scheduling on GPU processing elements, as well
as the importance of memory coalescing and data transfers
between host and device, which are explored.

(3) Profiling Tools for CPU and GPU. This assignment in-
troduces students to various profiling tools for CPUs (Perf,
Likwid, PAPI) and GPUs (nsys, ncu, rocprof, THAPI). Stu-
dents learn to identify performance bottlenecks using code
instrumentation and tools to measure performance events.

(4) Memory Hierarchy and Memory Access Latency. We
use vector triad (a stride variant), a linked-list traversal, and a
ping-pong code to introduce detailed performance aspects of
the memory hierarchy and parallelism, such as prefetching,
cache line efficiency, NUMA effects, cache coherence, and
core-to-core latency.

(5) Matrix Multiplication on CPU. A dense matrix multipli-
cation is used as a compute-bound micro-benchmark. We
focus on memory access patterns, loop scheduling with
OpenMP parallelization, cache blocking, (auto-)vectorization,
and compiler optimizations. Additionally, we encourage the
students to use roofline model for each architecture to fur-
ther analyze their experiments on BEAST.

(6) Matrix Multiplication on GPU. Assignment 6 covers per-
formance aspects of data transfers between host and device,
matrix multiplication cache blocking and thread scheduling
on GPUs, and introduces the CUDA programming model. Be-
sides, students can measure energy efficiency using DCDB.
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(7) Pipelining and Branch Prediction. This assignment in-
troduces codes to measure properties of key aspects in mod-
ern pipelined microprocessor architectures, such as instruc-
tion latency, throughput, and branch prediction. Branch pre-
diction capacities are analyzed via different types, i.e., condi-
tional jumps, indirect jumps, and returns.

Final Projects: At the end of the lab course, student groups work
on projects that put their knowledge and experience to the test.
These projects are structured similarly to the weekly assignments
but include more implementation workload around the topics dis-
cussed in the lab. Groups bid on the available platforms for their
project and further implement specified applications targeting
CPUs or GPUs using OpenMP, and optionally CUDA and HIP.
They further and evaluate their implementations according to the
provided instructions and report the results in a final presentation.

The content of these projects is described as follows:

(1) Multigrid is a well-established iterative approach for solv-
ing linear equations mainly associated with partial differ-
ential equations. This approach leverages a hierarchy of
grids to accelerate the convergence of the iterative solver.
In this project, students are provided with a sequential im-
plementation of a full multi-grid solver that is based on
Jacobi smoother, and it includes restriction and prolongation
steps, as well as the typical so-called V and W cycle schemes.
Groups implement vectorization, parallelization, and GPU
offloading for target codes and investigate performance bot-
tlenecks and efficiency.

(2) Automatic optimization and vectorization enabled byOpenMP
directives or compiler flags may not improve performance in
complex cases with complex access patterns. In such cases,
manual implementation of SIMD is often required, poten-
tially necessitating restructuring the algorithms to tap into
parallel processing capabilities. In this project, students ex-
tend the implementation of a sinc interpolation function [18]
with OpenMP as well as manual SIMD and evaluate their
solutions on several CPU platforms in BEAST.

(3) In the last project, students work on a time series mining
application, specifically matrix profile computation [17]. We
provide students with the source code for the serial imple-
mentation of matrix profile computation. Students imple-
ment it by enabling efficient multi-threading, vectorization,
and offloading and further study it in their selected target
platforms in BEAST.

Teaching Support Structure, Student Feedback, and Evaluation
Scheme: In terms of teaching support and student evaluation, we
require students to work in groups with Git for their collaboration,
assignment/project submission. For the discussion among students’
groups, a common Zulip channel is created. Tutors also get involved
in this channel to support students. Depending on the content of
each assignment and project, deadlines can be in one or two weeks.
After each assignment/project, a few groups are selected to present
the reports of their performance results. Following that, we can
question and discuss in detail how students understand the results
and performance aspects corresponding to each micro-architecture.

5 CHALLENGES
Organizing the practical course with the above-mentioned structure
comes with various organizational and technical challenges. These
challenges include:

(1) Structuring suitable assignments and projects that are aligned
with the primary goals of the lab course,

(2) Regular cross-institution coordination and planning,
(3) Coping with the gradual changes in hardware and software

platforms, which requires additional effort in keeping a dedi-
cated software environment for the assignments and projects
to rely upon while also maintaining an ever-changing re-
search software stack and environment,

(4) Better usage of scheduler for student jobs (overlapping allo-
cations).

6 EVALUATIONS OF BEAST LAB SUCCESS
Over the course of four semesters between 2021 and 2023, we have
asked students to evaluate their experiences in the BEAST Lab.
While the two universities conduct generic course evaluations, we
provided a special feedback form in addition that focuses on the
syllabus and learning aspects specific to the BEAST Lab. The types
of questions include rating on a scale, selecting from categories, and
providing free-text answers. In total, we have received 60 responses,
of which 12 are from students at the bachelor’s level (all enrolled in
computer science) and 48 at the master’s level (in computer science
and adjacent disciplines, such as computational science & engineer-
ing, robotics, cognition & intelligence, or games engineering).

6.1 Student Experience
On average, our students report having 4.2 years of programming
experience, which is slightly above their average length of enroll-
ment. Many students have previously taken courses in the subject
field, with a majority (58%) having attended the lectures Parallel Pro-
gramming or Programming of Supercomputers, 22% having attended
the lecture Advanced Computer Architecture, 8% having attended
a lab related to High Performance Computing or GPUs, and 12%
having attended no prerequisite courses at all. Despite this, many
students report having only little experience with both OpenMP
and OpenMP Offloading. On a 1-5 scale (5 very experienced and 1
novice ), the average student self-reports an experience of 2.4 for
OpenMP and an experience of 1.3 for OpenMP Offloading, with
38% and 79% of students having had no respective prior experience
at all, raising the question of how effective the adjacent courses
teach OpenMP as a parallel programming technique.

6.2 Merits of OpenMP
OpenMP is by far the most popular parallelization technology in
the lab, with almost two-thirds of students preferring its directive-
based approach to a computing-kernel paradigm (25%) such as the
one found in CUDA. Coming from a background of comparatively
little experience, students find that OpenMP is reasonably easy
to learn rated as 3.5/5, with OpenMP Offloading being somewhat
more difficult at 2.8/5 on a scale of 1 very easy 5 very hard. This
is likely due to the additional requirement of having to handle
data movement. OpenMP loop constructs were rated as the most
intuitive API for parallelization on CPU, followed by intrinsics
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Debugging Profiling Difference
CPU 2.7 3.0 0.3
GPU 1.9 2.4 0.5

Difference -0.8 -0.6

Table 1: Students' Opinions of Implementing Parallel Code 
on CPU and GPU on a 1-5 Scale. 

Note: Generally, students prefer pro-filing over debugging and 
working on CPU over working on GPU.

before OpenMP SIMD. On GPUs, twice as many students preferred 
writing OpenMP Offloading code overwriting CUDA code, with 
barely any students preferring HIP. Figure 3 shows the top reasons 
that students like OpenMP and the most often cited criticisms. As 
expected, the ease of implementation and the learning curve are 
seen as big pluses for using OpenMP for on-node parallelization. 
However, students often find it difficult to understand what their 
code or the OpenMP library is doing at run time, which is reinforced 
by the observation that students also find it difficult to debug their 
parallel programs. To this day, despite the maturity of OpenMP 
and shared memory parallelism in general, these still appear to be 
common pain points for parallel program developers.

6.3 CPU and GPU
As part of the lab course, students work with both CPU and GPU 
technology. Unsurprisingly, students preferred working on 
CPU rather than GPU (with GPUs scoring around 20% lower 
in the ease of debugging criterion and 15% lower in the ease of 
profiling criterion) and found that finding bottlenecks was 
generally easier than debugging a program (Table 1). With a 
rating of only 1.9/5, debugging on GPU was by far the most 
painful for students. This is likely due to the fact that GPU 
debugging tools are not nearly as prevalent as their CPU 
counterparts. The easiest task was profiling on the CPU, but with a 
rating of 3.0/5 it can hardly be said that this is a seamless 
experience.

Figure 3: Advantages and disadvantages of using OpenMP
according to student opinion. The biggest appeals of using
OpenMP for students are howeasy and fast it is to parallelize
code and the learning curve. However, students often find it
difficult to understand what their code or the OpenMP run-
time is doing.

Figure 4: Architecture popularity among students. The x86-
64-based systems (Icelake and Rome) outclass the ARM-
based systems (A64FX andX2), with theA64FX, in particular,
being the least popular. being the least popular.

6.4 Profilers
Students typically spend around 54% of their time parallelizing
their application until they reach their first correct implementation
(which includes debugging), and around 42% of their time in op-
timization (including profiling). In general, students find profilers
reasonably useful when attempting to optimize code (3.5/5). The
most popular profiler was Linux’s Perf (3.4/5), with Likwid (3.1/5)
and the GPU profilers (2.9/5) following suit.

6.5 Architectures
Throughout the lab, students work with four types of machines
available in the BEAST cluster. One of the motivations for the LRZ
to conduct the lab is to learn about the merits of different systems
from a user’s perspective, with students serving as stand-ins for
actual scientific users. According to Figure 4, the students have a
very clear opinion on which systems they like. The two x86-64-
based systems, Intel Icelake and AMD Rome, come out far ahead of
the ARM-based systems, Thunder X2 and the A64FX. Icelake wins
out slightly over Rome, though this may be attributed to the system
being slightly more recent, but both systems have a good approval
rating of 62% and 55% of participants, respectively. The opinion
on the Thunder X2 machines is neutral, with approximately equal
counts of approval and disapproval leading to an approval rating

Figure 5: Top reasons why students like or dislike architec-
tures found in BEAST. The most important factors for stu-
dents are performance and available documentation.
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of 2%. The biggest loser in terms of student opinion is clearly the
A64FX, with a final approval rating of -23%, which is particularly
unfortunate because the BEAST cluster has more A64FX machines
available than any other type, which means crowding should have
been less of an issue.

Figure 5 gives us clues as to why the approval ratings are the way
they are. The top reason why students liked or disliked architecture
was the performance they were able to achieve. For most students,
this weighs in favor of x86-64 and against the A64FX, likely due
to its unusual architecture. Documentation was the second most
important factor, both in favor and against systems, with students
remarking on the good documentation available for Icelake ma-
chines in particular. Furthermore, the ability to understand what
was happening in hardware was important for students. In the end,
when asked whether they think that they can choose which archi-
tecture to use given an algorithm, students were fairly confident
(3.2/5) that they would be able to make a good decision. When asked
whether they think they will be able to explain performance results,
students were also fairly confident (3.3/5) that they would be able
to explain the cause. Additionally, when asked what other archi-
tectures they would have been interested in, popular candidates
included RISC-V systems, FPGAs, and AI-specific architectures.

6.6 Lab Evaluation
Last but not least, we asked students to evaluate the course itself.
In general, students describe the difficulty of understanding the
algorithms for the assignments as medium (3-5 hours) and for the
projects as difficult (approximately 2 days). Some students felt that
they could have benefited from more in-depth introductions to
the algorithms, and it was found that self-guided research was
the primary source of information for understanding concepts and
developing solutions ahead of the provided course material and
API/standards documentation. Further, students felt that the lab
could be improved by additional feedback to students as well as sam-
ple solutions, indicating the desire to reduce the open-endedness
slightly in favor of a more rigidly structured course. Overall, many
participants thought that the course matched their expectations
fairly well (3.7/5) and that the exercises helped them understand
modern computer architecture (3.8/5). Many were also interested
in further student work such as a thesis or guided research.

Throughout the semesters of the BEAST Lab, we gained a lot
of experience with running the lab course and the surrounding
infrastructure. We believe this course is unique among the offerings
at our university, and based on student engagement in class and the
provided feedback, we know that students have the opportunity to
learn practical aspects of high performance computing not covered
in the theoretical courses. We therefore believe that the BEAST
Lab is a win for both the students taking the course and the staff
supporting it.

7 RELATEDWORK
Various valuable training programs, materials, and courses have
been developed by the HPC community. In order to locate the
scope of the BEAST Lab, we look at recent programs from three
main perspectives: 1) the primary educational purpose, 2) the target
audience, and 3) the teaching approach.

The Supercomputing Institute internship program at Los Alamos
National Laboratory [22] provides a basis in cluster computing for
undergraduate and graduate students, offering an educational expe-
rience to students and serves as an important recruitment tool for
HPC field. RWTH Aachen University offers a software lab [19] to
students, in which the students develop parallel code using modern
tools while focusing on High-Performance Computing foundations
and parallel programming skills. This lab also introduces a self-
paced learning approach where status surveys, developer diaries,
and group competitions are used to motivate and track students’
progress. The German National Supercomputing Center HLRS has
expanded its academic training programs to include courses for
students, teachers, and professionals in response to the increas-
ing demand from broader application domains and relevance of
high-performance computing and simulations beyond academia[7].
Kokkos is presented as a generic parallel programming model suit-
able for the education of a broader audience, including academia,
in the recent work of Sandia National Laboratory [3], where they
introduce the best practices obtained from giving virtual classes on
Kokkos. Michigan State University uses a flipped classroom model
and a “hands-on” approach in teaching parallel programming to
undergraduates in targeting STEM fields [4]. College of Meteoro-
logic Oceanography at National University of Defense Technol-
ogy in China offers a parallel computing course [2] tailored for
atmospheric science majors, addressing challenges faced by non-
computer science students in understanding parallel scalability.
Texas A&M High Performance Research Computing (HPRC) [1] ex-
plored educational approaches in response to COVID-19 pandemic
using virtual sessions and peer-learning environment.

Overall, in most cases, the existing programs focus on introduc-
ing the basics or mainstream HPC programming models and tools.
Also, existing programs mainly target undergraduate or graduate
student education or consider interdisciplinary domains (e.g., Mod-
Sim or AI) and, therefore, target a broad community of researchers
beyond the computer science discipline.

The educational challenge of teaching high-performance com-
puting in the face of rapid heterogeneous hardware innovation and
adoption renders parts of textbooks obsolete [10]. Reed College
uses a diverse heterogeneous hardware and software environment
for computer science majors. Artificial Intelligence National Labo-
ratory of Hungary, in collaboration with NVIDIA Deep Learning
Institute, discusses challenges in accelerated heterogeneous parallel
computing and deep learning education and presents the structure
of their Instructor-led Workshops [12]. Magic Castle [9] of Jülich
Supercomputing Centre in Germany creates the supercomputer ex-
perience in public or private Clouds enabling scalable HPC training
through provisioning of virtual supporting infrastructures. Indiana
University uses Jetstream National Science Foundation Cloud in-
frastructure [5], to provide practical HPC training experiences for
both HPC administrators and users, covering concepts from basic
command-line usage to advanced cluster management. FreeCom-
pilerCamp.org of Lawrence Livermore National Laboratory [21]
is an open online platform designed to train researchers in devel-
oping OpenMP compilers primarily to address the lack of training
resources for researchers who are involved in the compiler and lan-
guage development around OpenMP. Another worth-mentioning
work is on teaching methods and hardware platforms used by
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Purdue Research Computing for educating HPC system admin-
istrators [23]. Overall, we can conclude that providing resources
to users for training is a central piece of the teaching method in
most of the existing programs. Also, looking at ECP and PRACE
education programs, we conclude that existing programs often tar-
get platform-specific tools and optimizations with the intention of
better utilization of specific computing facilities.

BEAST Lab shares the spirit of recent training methods and
programs in providing resource access to students and extends
the scope of the micro-architecture of modern HPC platforms and
programming models.

8 LESSON LEARNED, SUCCESS STORIES, AND
DISCUSSIONS

Here we summarize a few of the lessons we learned from running
the lab:

• most students registering for the lab are interested in recent
technology. Getting access to expensive data center hard-
ware motivates them to invest a lot of time in assignments.

• often it is difficult for students to come up with explanations
for observed effects. Weekly meetings with a good mix of
background information and in-depth discussion of detailed
explanations are important for understanding.

• students always work more before deadlines. A job sched-
uler would not allow students to keep up with deadlines, so
measurements may come from congested and overloaded
systems. It is important to split up student groups to work
on different hardware to reduce this effect.

• next to simple micro-benchmarks (Part 1), working on more
complex code is important to see the bigger picture on the
challenges of well-tuned HPC code. Examples: just tuning
one kernel is not helpful (Amdahl’s law will kick in early);
on GPU it is important to keep data structures as long as
possible on the accelerator.

We can identify two types of success stories. First, we see that
Part 1 of the lab (discussing results of micro-benchmarks) helps
students to get good results on optimizing real-world codes (Part 2
of the lab). Second, a lot of students come back for student work
(bachelor’s/master’s theses) around BEAST. It is also nice to hear
from nearside researchers that students cite their participation in
the BEAST lab when searching for final theses. Finally, it is nice to
have a colleague helping advise the BEAST lab now who joined the
lab as a student before.

However, from the perspective of LRZ, it is important to discuss
whether specific goals could be achieved. Especially valuable are
experiences about (1) the maturity of software stacks, (2) the ease
of getting into parallel programming with a given API/framework,
and (3) whether programming models allow users to get the ex-
pected performance. In regards to (1), we wanted to understand
the maturity of support for ARM. It was good to see that students
had no issues with ARM compilers; the ecosystem around ARM
seems to be so well supported nowadays that switching from x86
to ARM as host architecture for large HPC systems is not any risk.
In regards to (2), we wanted to know if it is reasonable to start with
OpenMP GPU support to get users into GPU programming. Experi-
ence from the lab shows definitely that it is beneficial for users to

have an easy start. Once they see their code running on GPUs, it
is relatively easy to dig deeper. However, the latter is required to
get reasonable performance (3). Results from OpenMP Offloading
often were disappointing.

9 CONCLUSION AND OUTLOOK
The BEAST Lab is a success story for all participating institutions,
the universities, and the data center. While it is known among
students to be challenging, we see students acquiring a lot of in-
sights about CPU and GPU architectures, enabling them to come
up with significant speedups for given HPC application codes. The
lab successfully attracts good students. Furthermore, the ”Future
Computing” program benefits from the lab. First, students ask to
do their Bachelor/Master theses with LRZ. Second, a lot of valuable
experience is gathered with the help of the lab: it is helpful to know
that, e.g., migrating users to a new ISA or to GPUs for the next
leadership system can be done without much risk. And the experi-
ence becomes a guide for what kind of user training is required for
successful migration to the next system.
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