
Metadata Management in Scientific Computing

Eric L. Seidel
The City College of New York

eseidel01@ccny.cuny.edu

ABSTRACT
Complex scientific codes and the datasets they generate are
in need of a sophisticated categorization environment that
allows the community to store, search, and enhance meta-
data in an open, dynamic system. Currently, data is often
presented in a read-only format, distilled and curated by a
select group of researchers. We envision a more open and
dynamic system, where authors can publish their data in
a writeable format, allowing users to annotate the datasets
with their own comments and data. This would enable the
scientific community to collaborate on a higher level than
before, where researchers could for example annotate a pub-
lished dataset with their citations.

Such a system would require a complete set of permissions to
ensure that any individual’s data cannot be altered by others
unless they specifically allow it. For this reason datasets
and codes are generally presented read-only, to protect the
author’s data; however, this also prevents the type of social
revolutions that the private sector has seen with Facebook
and Twitter.

In this paper, we present an alternative method of publish-
ing codes and datasets, based on Fluidinfo1, which is an
openly writeable and social metadata engine. We will use
the specific example of the Einstein Toolkit, a shared sci-
entific code built using the Cactus Framework, to illustrate
how the code’s metadata may be published in writeable form
via Fluidinfo.

1. INTRODUCTION
Data management is quickly becoming a challenge in large
scale simulations and modeling as compute resources in-
crease in size, and simulations integrate with observational
and experimental data. Not only do these simulations pro-
duce increasingly large datasets, which must then be an-
alyzed and categorized, but the codes themselves become

1http://www.fluidinfo.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation of the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c©JOCSE, a supported publication of
the Shodor Education Foundation Inc.

more and more complex, often being developed by dis-
tributed teams. The Cactus Computational Toolkit2 is one
such software framework, comprising over 500 software mod-
ules (known as Thorns), of which a subset must be compiled
to produce a full simulation stack.

The Cactus Thorns specify their public interface using the
Cactus Configuration Language (CCL), which describes the
mechanics of the thorn, but provides little semantic data.
This makes it difficult to determine which of the hundreds
of thorns may be needed for a particular simulation. There
are two standard methods for dealing with these ambiguities:

1. Detail the semantics of every thorn in documentation
within the source tree. This is somewhat helpful when
a user has already downloaded the thorn in question,
but it does not help a new user discover useful thorns.

2. Collect documentation and use-cases for each thorn on
the main webpage for the framework. This is much
more helpful to new users in search of thorns, but
it raises new issues. Who maintains the website and
keeps the web-based documentation synchronized with
the source code? Thorns are generally maintained by
individual authors, not the community, so should all
authors have write access to the web server? If so, how
does one prevent authors from misrepresenting each
other’s codes? The end user is still presented a read-
only interface, meaning a user cannot easily annotate
and recommend useful thorns to others.

In the following sections, we will describe how Fluidinfo may
be used to annotate these datasets in a writeable manner,
while preserving the safety and integrity of the author’s orig-
inal data. We aim to show that the concept of “tagging,”
as introduced by social networking services, is well suited
to building and maintaining distributed scientific collabora-
tions in the computational sciences. Our approach is based
on loosely structured data, in contrast to other data formats
used in metadata and semantic web research. Section 2 ex-
amines other approaches to similar problems. Section 3 de-
scribes the Cactus Configuration Language, which contains
a substantial amount of Thorn metadata. Section 4 intro-
duces Fluidinfo, the writeable metadata engine, and its core
concepts. Section 5 describes specifically our strategy for

2http://www.cactuscode.org

Volume 3, Issue 2 Journal of Computational Science Education

26 ISSN 2153-4136 December 2012

http://www.fluidinfo.com
http://www.cactuscode.org


publishing the Einstein Toolkit metadata to Fluidinfo. Sec-
tion 6 investigates how the strategy presented in Section 5
may be adapted for publishing datasets as opposed to codes.
Section 8 reflects on the educational value of this project,
and the Blue Waters Undergraduate Petascale Education
Program that supported it.

2. RELATED WORK
Before discussing our approach to solving this problem, let
us examine other systems that could be used to support dis-
tributed collaboration. RDFPeers [3] is a distributed RDF
repository designed to solve scalability issues faced by many
centralized metadata stores. It uses a peer-to-peer archi-
tecture to spread metadata across many machines, and ef-
ficiently route queries to the appropriate machine. A dis-
tributed system like RDFPeers would be a natural fit for
our problem, as it could encourage authors to maintain the
metadata pertaining to their codes and datasets alongside
the actual data; however, we feel that RDF as a data format
may be excessively complex for our purposes. We believe
that a simpler format based on social tagging, like that used
by the Delicious bookmarking service3, would be sufficient
for our needs. In particular, RDF is based on triples of sub-
jects, predicates, and objects, whereas the tagging method we
describe only needs objects and attributes. Clearly we could
use RDF triples with a constant predicate hasAttribute,
but we gain little by doing so and incur additional complex-
ity.

The Social Accessibility [13] project attempts to help site-
owners keep up with accessibility standards by crowd-
sourcing some of the work. It is comprised of three pieces:
(1) a browser script with which end-users may register com-
plaints about websites and receive patches, (2) a browser
plugin to allow volunteers to investigate accessibility issues
and submit patches, and (3) a server that stores the com-
plaints and patches. When an end-user visits a website, the
browser script searches the server for any applicable patches,
retrieves them, and applies them to the page. The user’s
browsing experience is immediately enriched by the knowl-
edge of the community with little effort on the user’s part.
This project appears to have a similar goal to our own, en-
riching content via collaborative editing, albeit applied to a
different problem domain.

3. CACTUS CONFIGURATION LAN-
GUAGE

The Cactus Framework [15, 7] is an open source, modular,
portable programming environment for HPC computing4.
It was designed and written specifically to enable scientists
and engineers to collaboratively develop and perform the
large–scale simulations needed for modern scientific discov-
eries across a broad range of disciplines. Cactus is well suited
for use in large, international research collaborations. For
example, the Einstein Toolkit Consortium [16] is a collab-
oration of over 60 researchers who use Cactus for research
into relativistic astrophysics, and who maintain a core set of
some 175 modules.

3http://www.delicious.com
4This section was adapted from a previous paper on the
Cactus Configuration Language [1].

Figure 1: Cactus components are called thorns and
the integrating framework is called the flesh. The
interface between thorns and the flesh is provided
by a set of configuration files writing in the Cactus
Configuration Language (CCL).

3.1 Architecture
Cactus is a component framework. Its components are called
thorns whereas the framework itself is called the flesh (Fig-
ure 1). The flesh is the core of Cactus, it provides the APIs
for thorns to communicate with each other, and performs a
number of administrative tasks at build–time and run–time.
Cactus depends on three configuration files and two optional
files provided by each thorn to direct these tasks and provide
inter–thorn APIs. These files are:

• interface.ccl Defines the thorn interface and inher-
itance along with variables and aliased functions.

• param.ccl Defines parameters which can be specified
in a Cactus parameter file and are set at the start of a
Cactus run.

• schedule.ccl Defines when and how scheduled func-
tions provided by thorns should be invoked by the Cac-
tus scheduler.

• configuration.ccl (optional) Defines build–time de-
pendencies in terms of provided and required capabil-
ities, e.g. interfaces to Cactus–external libraries.

• test.ccl (optional) Defines how to test a thorn’s cor-
rectness via regression tests.

The flesh is responsible for parsing the configuration files at
build-time, generating source code to instantiate the differ-
ent required thorn variables, parameters and functions, as
well as checking required thorn dependencies.

At run-time the flesh parses a user provided parameter file
that defines which thorns are required and provides key-
value pairs of parameter assignments.5 The flesh then ac-
5Note that this parameter file is different from the file
param.ccl which is used to define which parameters exist,

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 27

http://www.delicious.com


Configuration Files (CCL)
Interface, Parameters, 

Schedule, Configuration

Source Code
Fortran/C/C++, include files, 

Makefile

Verification & Validation
Testsuites

Documentation
Thorn guide, Examples, 

Metadata

Cactus Thorn

Figure 2: Cactus thorns are comprised of source
code, documentation, test–suites for regression test-
ing, along with a set of configuration files written
in the Cactus Configuration Language (CCL) which
define the interface with other thorns and the Cac-
tus flesh.

tivates only the required thorns, sets the given parameters,
using default values for parameters which are not specified
in the parameter file, and creates the schedule of which func-
tions provided by the activated thorns to run at which time.

The Cactus flesh provides the main iteration loop for simu-
lations (although this can be overloaded by any thorn) but
does not handle memory allocation for variables or paral-
lelization; this is performed by a driver thorn. The flesh
performs no computation of its own — this is all done by
thorns. It simply orchestrates the computations defined by
the thorns.

The thorns are the basic modules of Cactus. They are
largely independent of each other and communicate via calls
to the Flesh API. Thorns are collected into logical group-
ings called arrangements. This is not strictly required, but
strongly recommended to aid with their organization. An
important concept is that of an interface. Thorns do not
define relationships with other specific thorns, nor do they
communicate directly with other thorns. Instead they de-
fine relationships with an interface, which may be provided
by multiple thorns. This distinction exists so that thorns
providing the same interface may be interchanged without
affecting any other thorns. Interfaces in Cactus are fairly
similar to abstract classes in Java or virtual base classes
in C++, with the important distinction that in Cactus the
interface is not explicitly defined anywhere outside of the
thorn.

This ability to choose among multiple thorns providing the
same interface is important for introducing new capabilities
in Cactus with minimal changes to other thorns, so that
different research groups can implement their own particu-
lar solver for some problem, yet still take advantage of the
large amount of community thorns. For example, the orig-
inal driver thorn for Cactus which handles domain decom-
position and message passing is a unigrid driver called PUGH.
More recently, a driver thorn which implements adaptive
mesh refinement (AMR) was developed called Carpet [10, 9,

while the former is used to assign values to those parameters
at run-time.

4]. Carpet makes it possible for simulations to run with mul-
tiple levels of mesh refinement, which can be used to achieve
great accuracy compared to unigrid simulations. Both PUGH

and Carpet provide the interface driver and application
thorns can relatively straightforwardly migrate from unigrid
to using the advanced AMR thorn.

Thorns providing the same interface may also be compiled
together in the same executable, with the user choosing in
the parameter file, at run-time, which implementation to
use. This allows users to switch among various thorns with-
out having to recompile Cactus.

Thorns include a doc directory which provides the documen-
tation for the thorn in LATEX format. This allows users to
build one single reference guide to all thorns via a simple
command.

3.2 Tools
As a distributed software framework, Cactus can make use
of some additional tools to assemble the code and manage
the simulations. Oftentimes each arrangement of thorns re-
sides in its own source control repository, as they are mostly
independent of each other. This leads to a retrieval process
that would quickly become unmanageable for end-users (for
example the Einstein Toolkit is comprised of 135 thorns).
To facilitate this process we use a thornlist written using
the Component Retrieval Language [11], which allows the
maintainers of a distributed framework to distribute a sin-
gle file containing the URLs of the components and the de-
sired directory structure. This file can then be processed by
a program such as our own GetComponents script, and the
entire retrieval process becomes automated.

In addition to the complex retrieval process, compiling Cac-
tus and managing simulations can be a difficult task, espe-
cially for new users. There are a large number of options that
may be required for a successful compilation, and these will
vary across architectures. To assist with this process a tool
called the Simulation Factory [12, 14] was developed. Simu-
lation Factory provides a central means of control for manag-
ing access to different resources, configuring and building the
Cactus codebase, and also managing the simulations created
using Cactus. Simulation Factory uses a database known as
the Machine Database, which allows Simulation Factory to
be resource agnostic, allowing it to run consistently across
any pre-configured HPC resource.

4. FLUIDINFO
Fluidinfo is an openly writeable datastore, whose goal is to
extend collaborative tagging to all forms of data. Designed
around the metaphor of post-it notes, it is a collection of
objects and tags at its core, with a complete set of permis-
sions to give users full control over their data. Fluidinfo is
developed and hosted by Fluidinfo Inc., a start-up company.
This section will give a brief overview of the basic concepts
of Fluidinfo; a more detailed discussion may be found in the
official documentation [6].

4.1 Objects
One of the core concepts of Fluidinfo is that objects are
completely anonymous, having no owner and no inherent

Volume 3, Issue 2 Journal of Computational Science Education

28 ISSN 2153-4136 December 2012



Figure 3: Visual representation of the Fluidinfo object for the song “Black Star” by Radiohead. Note the combination

of tags from a variety of users, with primitive and opaque values.

meaning. Objects exist solely as a container for tags, which
define their semantics.

4.2 Tags
Tags have owners and permissions, so while anyone can tag
an object, tags may be read-only, read-write, or completely
invisible to the outside world. When a tag is placed on an
object, it may contain any value, and the type of value need
not be consistent between tag-instances (although in prac-
tice this would be a good idea). Fluidinfo does, however dis-
tinguish between so-called primitive and opaque tag-values.

Primitive tag-values are a subset of the standard types
found in many programming languages: integers,
floating-point numbers, booleans, strings, the null
value, and sets of strings. Note that arrays, or sets
of anything other than strings are considered opaque
values. Primitive values are useful because Fluidinfo
allows indexing of these values, permitting more com-
plex and specific querying of tags with primitive values.

Opaque tag-values include any type of value that is not
considered primitive. This includes JSON arrays or
objects, binary data, anything that can be assigned
a MIME-type. Opaque values are not indexed, and
therefore users cannot search based on the contents of
opaque tags, merely their presence.

4.2.1 About Tag
If objects are anonymous and an instance of a tag may con-
tain any value independent of the other instances, one may
wonder how to identify a specific object. Fluidinfo allows
objects to be uniquely identified by a UUID (Universally
Unique Identifier6) and the so-called about-tag. The about-
tag, fluiddb/about, is a unique, immutable tag that may
optionally be provided when creating an object. This al-
lows for an object to be given some basic semantic value
without adding any user tags to it, which can be useful in
establishing tagging conventions.

4.3 Namespaces
Tags can be grouped together in Namespaces. All of a user’s
tags will live inside the user’s top-level namespace to avoid
conflicts with other users’ tags, but sub-namespaces can
be used to logically group tags. As an example, suppose
the Fluidinfo user eric created a rating tag in his top-
level namespace, the qualified name of that tag would be

6http://en.wikipedia.org/wiki/UUID

eric/rating. If we look back at Section 4.2.1, we can sur-
mise that there is actually nothing special about the about-
tag, it is simply a tag belonging to the fluiddb user, who is
guaranteed to never change the value.

4.4 Permissions
The core mechanic that allows Fluidinfo to be flexible is its
permissions system. Each namespace and tag has an explicit
set of permissions, describing exactly how users may interact
with the item in question. This affords users fine-grained
control over their data. They can publish it in read-only,
read-write, or write-only form, or even transfer entire control
of a namespace/tag to another user7. As an example of how
these permissions can be used, let us examine how Fluidinfo
creates new users. There is a tag, fluiddb/users/username,
placed on the object representing a user, that tells Fluidinfo
that such a user exists. The fluidinfo.com user has cre-
ate permissions for this tag, so when a new user signs up
on http://fluidinfo.com, the fluidinfo.com user creates a
new object and adds the fluiddb/users/username tag to
it, signifying that a new user has been created.

4.5 Fluidinfo Query Language
Fluidinfo includes a simple query language to allow users to
search the datastore for specific tags and tag-values. There
are five basic types of queries in Fluidinfo’s query language.

Presence queries are the simplest type. They check only
for the presence of a tag on an object, and are written
as has <tag>.

Numeric queries search for tags that have a specific value
using the standard mathematical equality operators,
and are written as <tag> (=,<,>,etc.) <value>.

Textual queries attempt to match the query text against
the text contents of a tag, and are written as <tag>

matches <text>.

Set contents queries check for the tags that contain the
given string. Note the difference between set contents
and textual queries: set contents apply to tags con-
taining a set of strings while textual queries apply to
tags containing a single string. Set contents queries
are written as <tag> contains <string>.

Logical queries combine the above types using the (, ),
and, or, and except operators. This allows arbitrarily

7For a more detailed and complete list of the allowed permis-
sions, visit http://doc.fluidinfo.com/fluidDB/permissions.
html

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 29

http://en.wikipedia.org/wiki/UUID
http://fluidinfo.com
http://doc.fluidinfo.com/fluidDB/permissions.html
http://doc.fluidinfo.com/fluidDB/permissions.html


complex queries, such as
(has eric/seen and (eric/rating > 4 or

john/rating > 8)) except imdb.com/rating < 5.

5. WRITEABLE METADATA ENGINE
FOR CACTUS COMPONENTS

In this section we will describe the desired capabilities for
handling metadata for simulation codes, such as the ability
to support open data objects and metadata which can then
be provided by any user, promoting community driven stan-
dards and enabling innovation. Such a system would allow
researchers to annotate the codes with their opinions, expe-
riences, or tips while preserving the integrity of the original
data. Social networks have already solved a subset of this
problem, but there is no equivalent system in use by the
scientific community.

Foursquare is a location-aware social networking site. Users
publish their presence at a physical location, e.g. a metro
station, a restaurant, a school, and can add photos or tips
for others. If the physical location does not exist, users can
add their own selecting basic metadata to describe the site.
Social features include the ability to see where your friends
are and have been, and to read the tips left by others.

Learning from this flexible model we envisage similar tools
for data that will encourage academic data to break free
from the current constraints of rigid schema, proprietary
and controlled databases and lack of social networking tools.
The general scenario we envisage is described below, here for
software components, although a similar methodology will
work for general data sets.

1. Software components (e.g. Cactus Thorns) are added
to Fluidinfo in the same manner as foursquare lo-
cations. Basic tags could for example be based on
the Dublin Core [5], with fields for authors, soft-
ware location, etc. These tags can only be edited
by the original user unless specified otherwise. An
object would be created in Fluidinfo for each soft-
ware component, we suggest an about-tag conven-
tion of CCTK:<arrangement>/<thorn>; however, this is
strictly optional as the thorns would also be identified
by their tags. There could also be multiple objects for
each thorn since they could be added by people other
than the original authors.

2. Trusted experts or consortia can then tag thorns to
provide a quality ranking, associate datasets generated
by the thorn, or warn new users of an existing bug. For
example, a maintainer for the Einstein Toolkit would
tag Cactus thorns with the release for which they have
been tested and verified. Users can then search for soft-
ware which has been ratified by the Einstein Toolkit
Consortium, or they could search for software that has
been recommended by a trusted colleague.

3. A graduate student is working on a research project to
develop a new ontology for scientific computing. She
can easily add tags representing this ontology to the
Cactus thorns, where the user community can test out
her work without necessitating new servers, or without
her having write access to the basic thorn tags.

We implemented a prototype of such a system for the Cactus
Thorns, with a web front-end written in Python [8]. The ini-
tial set of metadata we extracted from each thorn came from
the configuration files and the Readme, representing a sub-
set of the functional and bibliographical metadata contained
in each thorn, as seen in Table 1. These tags are added au-
tomatically by a Python script that parses the configuration
and Readme files of a thorn. The intent is for thorn authors
to run this script on their thorns, immediately populating
Fluidinfo with a set of Cactus metadata. Once the basic set
of metadata has been imported, we can begin to enhance
the existing data by adding other relevant tags to the ob-
jects representing thorns.

The Einstein Toolkit is a small subset of all Cactus thorns,
and thorns may be imcompatible with each other, e.g. if
they implement the same interface. Therefore it would
be useful for users to know if any given thorn is part of
the Einstein Toolkit; we can implement this quite nat-
urally by creating an einsteintoolkit.org user8, which
will tag all thorns in the toolkit with an einstein-

toolkit.org/includes tag with the value set to True. Fig-
ure 4 illustrates what the resulting Fluidinfo object might
look like.

Using this tag structure we created a simple web application,
running on Google’s AppEngine platform, to dynamically
retrieve the objects representing the Einstein Toolkit, and
insert the values into an HTML template for easy viewing
of the thorn metadata. Figure 5 shows a sample page from
this web application.

With these two sources of data we can already perform useful
queries on the Cactus metadata. Cactus uses a tool called
GetComponents [11] to automate the process of retrieving
many thorns from different locations. To accomplish this,
GetComponents essentially needs three pieces of informa-
tion:

1. Where the thorn is located (URL).

2. How to retrieve the thorn (version control system).

3. Where to place the thorn on the local filesystem.

All of this data is contained in the Fluidinfo tags posted by
the Python script9! So if we wanted to retrieve the Einstein
Toolkit, we could dynamically generate a file in the CRL
format GetComponents uses by querying Fluidinfo for all
objects that have einsteintoolkit.org/includes = True,
retrieving the tags

• gridaphobe/CCTK/arrangement

• gridaphobe/CCTK/name

• gridaphobe/CCTK/url

8Fluidinfo only allows the owner of a domain to create the
user for that domain, so domain users can be more readily
trusted.
9Cactus has a convention of placing thorns inside an
arrangements directory with the structure arrange-
ments/<arrangement>/<thorn>.

Volume 3, Issue 2 Journal of Computational Science Education

30 ISSN 2153-4136 December 2012



6/5/11 4:03 PM

Page 1 of 1file:///Users/eric/Documents/BW_UPEP/carpet.svg

fi
fluidinfo

edf71876-
96b7-
4d5b-
8a68-

528be09c6b57

gridaphobe/CCTK/name="carpet"

gridaphobe/CCTK/provides_function={Non-primitive type}

gridaphobe/CCTK/requires_function={Non-primitive type}

gridaphobe/CCTK/scm="git"

gridaphobe/CCTK/shares={Non-primitive type}

gridaphobe/CCTK/url="carpetgit@carpetcode.dyndns.org:carpet"

gridaphobe/CCTK/uses_function={Non-primitive type}

gridaphobe/CCTK/version="Unknown"

njr/index/about

einsteintoolkit/includes=True

fluiddb/about="CCTK:carpet/carpet"

gridaphobe/CCTK/arrangement="carpet"

gridaphobe/CCTK/authors={Non-primitive type}

gridaphobe/CCTK/description

gridaphobe/CCTK/implements="driver"

gridaphobe/CCTK/inherits={Non-primitive type}

gridaphobe/CCTK/language="Unknown"

gridaphobe/CCTK/licence="GPLv2+"

gridaphobe/CCTK/maintainers={Non-primitive type}

Figure 4: Visual representation of the Fluidinfo object for the Carpet module in the Einstein Toolkit.

Fully-qualified Tag Description

gridaphobe/CCTK/arrangement The arrangement the thorn belongs to.
gridaphobe/CCTK/authors A list of all authors of the thorn.
gridaphobe/CCTK/description The description of the thorn as found in the Readme.
gridaphobe/CCTK/implements A list of interfaces the thorn implements.
gridaphobe/CCTK/inherits The thorn (if any) inherited from.
gridaphobe/CCTK/name The name of the thorn.
gridaphobe/CCTK/scm The version control system used for the thorn’s source code.
gridaphobe/CCTK/url The URL where the thorn’s source code is located.

Table 1: A sample of the tags used to describe Cactus thorns in Fluidinfo. The tag names are fully-qualified
and assume the current user’s name is gridaphobe.

Figure 5: A prototype of a web application that
dynamically displays thorn metadata based on the
tags stored in Fluidinfo. The Einstein logo in the
top-right corner indicates that this thorn is part of
the Einstein Toolkit.

• gridaphobe/CCTK/scm

The returned data could then be reformatted into a CRL
file, and GetComponents invoked to automatically retrieve
the requested thorns10.

This is already a significant improvement over the current
system of creating and distributing a thornlist, which is both
tedious and error-prone, but we can go further and solve
a problem that was previously unsolvable. The Einstein
Toolkit thorns can all be compiled together; however, they
are not all needed to run individual simulations. Researchers
will generally only compile a subset of the Einstein Toolkit,
including just the thorns needed to model their particular
system. In this case downloading the entire Einstein Toolkit
is superfluous, we would like to simply download the thorns
that we actually need. Using the thorn configuration files, we
can construct a list of the thorns we will need to download
in order to use a specific base set of thorns, providing initial
data, drivers, and other components of a simulation [1]. We
can then dynamically retrieve the tags mentioned above for
only this subset of thorns, and provide GetComponents with
a much smaller list of thorns to download. This also has
the benefit of isolating the code in the source tree of any
simulation to only that which is necessary.

If we wanted to implement a system like this on our own,
we would have to setup a new webserver and database, de-
fine a schema to contain the data, create a REST API, and

10There are some issues not covered by this example, e.g.
the directory structure of different git repositories, but none
that could not be resolved by adding a few extra tags

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 31



then assign someone to maintain the database and server.
If we additionally wanted the system to be writeable (or at
least have individual thorns managed by their authors), we
would then have to implement an authentication system as
well, and our data would still be limited to some pre-defined
schema. Fluidinfo allows others to add to our data, and we
can choose whether to ignore it or to begin incorporating
pieces into our applications.

6. FUTURE WORK
In the previous section we saw how to use Fluidinfo to store
the metadata of Cactus thorns in a writeable format, add
tags to those thorns from a different source, and then use
tags from both sources to solve a problem that previously
could not be solved without setting up our own web server.
We did, however, ignore one issue; the example only dealt
with thorns uploaded by one user, whereas the Einstein
Toolkit is comprised of thorns written by many different
authors. Suppose we don’t know who all of the authors are,
how will we know which tags to retrieve? For example, the
Carpet thorns are written by Dr. Erik Schnetter, but un-
less we know his Fluidinfo username, we won’t know how to
retrieve his tags. Fluidinfo does not currently support wild-
cards in the list of tags to return, so we must explicitly list
the tags we want. So how can we best adapt our solution to
the actual problem? There are two possible solutions:

1. Instead of using tags in the author’s namespace, we
could take advantage of Fluidinfo’s permissions system
to give all authors write permission to tags in a cac-

tuscode.org/CCTK namespace. This way we would al-
ways retrieve tags from the trusted domain user. This
solution detracts from the personalization of Fluidinfo
though, since the tags are coming from a domain user
instead of the author himself. In a sense this repre-
sents how we might solve the metadata problem on
our own, but with the extra downside that we can
no longer prevent authors from modifying each other’s
tags! Fluidinfo does not allow separate permissions per
tag-instance, and this would become far too complex
to manage regardless.

2. Create a cactuscode.org/author tag that would be
applied to the objects representing the users in Flu-
idinfo who are authors of Cactus thorns. This way
we can query Fluidinfo for the objects with the tag,
and ask it to return the fluiddb/users/username tag,
giving us a list of all Fluidinfo users who are also Cac-
tus authors. Then we can proceed with the process
described in Section 5. This solution has several ad-
vantages: (1) authors cannot modify each other’s tags
without explicit permission, (2) in the event of a tag
collision (where more than one author has tagged a
thorn) we can apply some filtering condition based on
the thorn’s own author list to determine which tags are
most authoritative, (3) we are actually adding more
data to the ecosystem by tagging the users as Cactus
authors.

6.1 Other Datasets
Supercomputers are generating massive amounts of data on
a daily basis, data which must be stored efficiently and then

classified so that it can be referred to and even cited. Our
strategy in Section 5 can easily be adapted to solve this prob-
lem. Suppose we run a simulation of two colliding neutron
stars and store the resulting dataset. We can now create
an object in Fluidinfo to represent this simulation, and tag
it with the machine used, number of cores, initial values,
duration, and any number of other relevant statistics about
both the simulation and the output. Then a PhD student
uses our dataset in her thesis; she can tag the dataset in
Fluidinfo with a <student>/cited tag whose value would
be a list of all papers in which she cited our dataset (likely
using DOIs). If she is consistent in tagging the datasets
she has cited, we could perform interesting queries using
Fluidinfo, i.e. we could quickly determine which supercom-
puters had contributed most to her work. Other researchers
might tag the datasets with specific situations where they
proved useful, or perhaps related datasets. With a write-
able, schemaless system, the datasets may be augmented in
any fashion deemed suitable by users. This allows for use-
cases the original publisher could not have conceived of to
arise organically.

It is becoming clear that citing datasets produced by sim-
ulations will be essential for continued scientific progress,
one need look no further than the NSF’s Computational and
Data-Enabled Science and Engineering11 program. Ball and
Duke have raised some important questions that will have
to be answered for data citation to become widespread [2].
We would like to address the question of how the metadata
can be stored in a manner accessible both to humans and
automated scripts. By storing the metadata in a shared
datastore like Fluidinfo, it is immediately available for con-
sumption by scripts, and by extension easily converted into
a human-readable page as we have demonstrated in this pa-
per. We also gain the advantage of not being tied to any
schema, allowing us to freely add more metadata whenever
necessary. Finally, the writable nature of Fluidinfo removes
the author’s responsibility of linking to all papers that have
cited the dataset. The author of a paper can simply tag the
dataset in Fluidinfo!

7. CONCLUSION
Scientific research is increasingly dependent on the simula-
tion of complex processes and, by extension, on the ability to
organize, search, and refer to the datasets generated by sim-
ulations. We propose using writable metadata to distribute
and maintain scientific metadata, and have shown one possi-
ble method of implementing such a system. More work will
be required to investigate alternative systems, schemas, and
interfaces, as well as to determine what would be an optimal
solution. We hope that the scientific community will take
this opportunity to start a conversation about how to man-
age the large amounts of data currently being generated by
our research on a daily basis.

8. EDUCATIONAL EXPERIENCE
The research presented in this paper was performed as part
of a year-long internship sponsored by the Shodor Educa-
tional Foundation12. The program began with a two-week

11http://www.nsf.gov/mps/cds-e/
12http://www.shodor.org

Volume 3, Issue 2 Journal of Computational Science Education

32 ISSN 2153-4136 December 2012

http://www.nsf.gov/mps/cds-e/
http://www.shodor.org


intensive introduction to HPC, covering parallelization is-
sues, N-Body problems, MPI, and other computational sci-
ence topics. Following the introductory session, the interns
split up to work with individual mentors for the rest of the
year. While not strictly related to Computational Science,
the research presented in this paper was strongly supported
and enhanced by the Blue Waters Petascale Internship, es-
pecially the focus on solving real problems.

Acknowledgments
This work was supported by the Blue Waters Undergradu-
ate Petascale Education Program, as well as Fluidinfo, Inc.
The initial work relating to the Cactus Configuration Lan-
guage was supported by NSF REU program (#1005165).
We would like to thank Steven Brandt, Frank Löffler, and
Erik Schnetter for their mentorship in the Cactus group, and
Gabrielle Allen for suggesting the use of Fluidinfo for storing
the thorn metadata. We acknowledge Nicholas J. Radcliffe,
who created http://abouttag.com to generate visuals of Flu-
idinfo objects.

9. REFERENCES
[1] Gabrielle Allen, Tom Goodale, Frank Löffler, David

Rideout, Erik Schnetter, and Eric L. Seidel.
Component specification in the cactus framework:
The cactus configuration language. In CBHPC ’10,
New York, NY, USA, 2010. ACM.

[2] A. Ball and M. Duke. Data citation and linking. In
DCC Briefing Papers. Digital Curation Centre, 2011.

[3] Min Cai, Martin Frank, Baoshi Yan, and Robert
MacGregor. A subscribable peer-to-peer rdf repository
for distributed metadata management. Web
Semantics: Science, Services and Agents on the World
Wide Web, 2(2):109 – 130, 2004.

[4] Mesh Refinement with Carpet.

[5] Dublin Core Metadata Initiative.

[6] Fluidinfo Documentation.

[7] T. Goodale, G. Allen, G. Lanfermann, J. Massó,
T. Radke, E. Seidel, and J. Shalf. The Cactus
framework and toolkit: Design and applications. In
Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer
Science, Berlin, 2003. Springer.

[8] Python Programming Language.

[9] Erik Schnetter, Peter Diener, Nils Dorband, and
Manuel Tiglio. A multi-block infrastructure for
three-dimensional time-dependent numerical relativity.
Class. Quantum Grav., 23:S553–S578, 2006.

[10] Erik Schnetter, Scott H. Hawley, and Ian Hawke.
Evolutions in 3D numerical relativity using fixed mesh
refinement. Class. Quantum Grav., 21(6):1465–1488,
21 March 2004.

[11] Eric L. Seidel, Gabrielle Allen, Steven Brandt, Frank
Löffler, and Erik Schnetter. Simplifying complex
software assembly: the component retrieval language
and implementation. In TG ’10: Proceedings of the
2010 TeraGrid Conference, pages 1–8, New York, NY,
USA, 2010. ACM.

[12] SimFactory: Herding Numerical Simulations.

[13] Hironobu Takagi, Shinya Kawanaka, Masatomo
Kobayashi, Takashi Itoh, and Chieko Asakawa. Social
accessibility: achieving accessibility through

collaborative metadata authoring. In Proceedings of
the 10th international ACM SIGACCESS conference
on Computers and accessibility, Assets ’08, pages
193–200, New York, NY, USA, 2008. ACM.

[14] Michael Thomas and Erik Schnetter. Simulation
factory: Taming application configuration and
workflow on high-end resources. In CBHPC ’10, New
York, NY, USA, 2010. ACM.

[15] Cactus Computational Toolkit.

[16] The Einstein Toolkit.

Journal of Computational Science Education Volume 3, Issue 2

December 2012 ISSN 2153-4136 33

http://abouttag.com



