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ABSTRACT 
The problem of interconnecting nets with multi-port terminals in 
VLSI circuits is a direct generalization of the Group Steiner 
Problem (GSP). The GSP is a combinatorial optimization problem 
which arises in the routing phase of VLSI circuit design. This 
problem has been intractable, making it impractical to be used in 
real-world VLSI applications. This paper presents our work on 
designing and implementing a parallel approximation algorithm 
for the GSP based off an existing heuristic on a distributed 
architecture. Our implementation uses the CUDA-aware MPI 
approach to compute the approximate minimum-cost Group 
Steiner tree for several industry-standard VLSI graphs. Our 
implementation achieves up to 103x speedup compared to the best 
known serial work for the same graph. We present the speedup 
results for graphs up to 3k vertices. We also investigate some 
performance bottleneck issues by analyzing and interpreting the 
program performance data. 
 

1. INTRODUCTION 
A number of optimization problems with different application 
areas can be modeled by the GSP: given an undirected weighted 
graph G = (V, E) and a family N = {N1,…,Nk} of k disjoint groups 
of nodes Ni ⊆ V, find a minimum-cost tree which contains at least 
one node from each group Ni. One of such problems is the global 
routing phase in VLSI design. The exponential increase in 
complexity of integrated circuits where tens and thousands of 
non-overlapping nets may need to be routed simultaneously 
makes VLSI design a broad area where combinatorial 
optimization methods can be applied. The problem of 
interconnecting a net with multi-port terminals is a direct 
generalization of the GSP.  

The advent of modern petascale supercomputing architectures has 
enabled scientists and engineers to solve several complex 
problems. Today's supercomputers can not only perform 
calculations with blazing speed, but also process vast amounts of 
data in parallel by distributing computing tasks to thousands of 
processing elements. With portable Application Programming 
Interfaces (APIs) such as MPI (Message Passing Interface) and 
CUDA (Compute Unified Device Architecture), researchers can 
now exploit parallelism to not only solve bigger problems, but 
also solve more problems in shorter time. This paper presents our 
work on the design and implementation of a parallel 
approximation algorithm for the GSP that uses Depth Bounded 

Steiner Tree Approximation [1]. Our goal was to achieve a better 
run time to make the heuristic practical for very large scale 
problems. 

2. A GPU-BASED ALGORITHM 
Given an instance of the GSP, our parallel implementation returns 
a minimum-cost group Steiner tree. Our parallel algorithm follows 
the following steps in order. 

2.1 Metric Closure on GPU 
In general, the given graph G may violate the triangle inequality, 
i.e., there may be edges in G whose cost is greater than the cost of 
the minimum u-v path in G. An optimal group Steiner tree will 
contain no such edges, since replacing such edges with the 
corresponding shortest paths will decrease the total tree cost. 
Therefore, without loss of generality, we replace G by its Metric 
Closure. The Metric Closure is defined as the complete graph 
where the cost of each edge (u, v) is equal to the cost of the 
minimum u-v path in G. In other words, our first task is to 
compute the All Pair Shortest Paths (APSP) for the given graph 
and replace every edge cost with the corresponding minimum u-v 
path cost. For the APSP, we use a highly efficient CUDA 
implementation for the Blocked Floyd-Warshall APSP algorithm 
from [2] on a GPU. After computing the metric closure and 
replacing the original graph with it, we modify G as follows. We 
duplicate and replace every port with a new node and add a zero-
cost edge between the two. The original port is now a non-port 
and the newly added node is now a port. An optimal tree in the 
modified graph G’ has the same cost as an optimal tree in the 
original graph. Hence, this transformation allows us to seek a 
near-optimal Steiner tree in the original graph. 
 

2.2 Group Steiner Heuristic on CPU 
Using G’ from the previous step, we now construct a minimum-
cost Group Steiner tree by launching multiple processes using 
CUDA-aware MPI. A d-star is defined to be a rooted tree of depth 
at most d. With every vertex as the potential root r, we follow the 
following steps in order to construct the final solution. 

2.2.1 1-Star 
We construct 1-star tree rooted at the root of the optimal solution 
tree, i.e. a tree of depth 1 where all leaves are ports, one from each 
group. 

2.2.2 Minimum-Norm Partial Star 
We then select the intermediate nodes and determine a set of 
groups that should be connected to each intermediate node. A 
root, an intermediate node and a set of groups together form a 
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Partial-Star. Each partial-star is a sub-tree of the solution tree. We 
compute all such partial stars until all the groups are spanned. 

2.2.3 2-Star 
We combine all the partial-stars computed in the previous step to 
form the 2-star solution tree for the given vertex. 

2.2.4 Minimum-cost 2-Star 
We then collect all such 2-star solution trees obtained from the 
previous step and select the one with the minimum cost as the 
final solution. This is the minimum cost Steiner tree that the 
algorithm is supposed to output. 

 
As shown in Figure 1, (a) constructs a rooted 1-star, i.e. a tree of 
depth 1 where all leaves are ports, one from each group. A root, 
an intermediate node and a set of groups together form a partial-
star. Each minimum-norm partial-star is a sub-tree of the solution 
tree [1]. Steps (c) though (e) compute such partial-stars until all 
groups are spanned. Step (f) combines all the partial-stars 
computed in the previous step to form a 2-star tree for the given 
root r. Out of all such 2-star trees obtained from the previous step, 
the one with the minimum cost is the final solution. 

2.3 Work Distribution 
Our Hybrid CPU-GPU approach uses CUDA-aware MPI as the 
standard for launching multiple processes on the Blue Waters 
supercomputer. In distributing work, the popular master-slave 
approach was used, wherein process 0 is the “master” process and 
the remaining ones are “slave” processes. The master performs 
step 2.1 and then broadcasts the modified graph to all the slaves. 
Each vertex (a potential root) is then mapped to a slave, whose 
task is to perform step 2.2 and communicate the result back to the 
master. After receiving all such results, the master then performs 
reduction to compute the overall solution. 

2.4 NP-Hardness of GSP 
The Group Steiner Problem (GSP) is a direct generalization of 
Classical Steiner Tree Problem, and has been known to be NP-
hard. Hence it is not known whether an optimal solution to the 
GSP can be found by using a polynomial-time algorithm. The 
GPU-based algorithm as described above is a polynomial-time 
approximation scheme that efficiently outputs a near-optimal 
Group Steiner Tree. 

The performance ratio is defined as the ratio of the approximate 
cost to the optimal cost for a given instance of the GSP. The 
Group Steiner Heuristic as described above returns a solution with 
a performance ratio no more than 2. 2 +	 ln()

*
) . √𝑘 where k is 

the number of groups in the given instance of GSP [1]. 

The results in Table 1 show the comparison between the best 
known upper bound of the optimal cost (Opt. Cost) and the 
approximate cost(Approx. cost) returned by our GPU-based 
approach. Our results show that the GPU-based approach returns a 
nearly optimal solution with negligible cost error and a 
performance ratio within the given upper bound. 

3. PERFORMANCE EVALUATION 
We ran our performance tests on Blue Waters supercomputer 
which uses a Cray XE6/XK7 system. We tested both our serial 
and parallel implementations using several Wire Routing Problem 
(WRP) instances from industry. The instances are in a widely 
accepted standard STP format [3]. We compare our approximate 
solutions for WRP instances with optimal solutions from [4]. Our 
analysis shows the cost error is less than 1% for all the input 
graphs that we tested on. 
 

Graph 
name 

Opt. cost Approx. 
cost 

Error % 

wrp3-11 1100361 1100427 0.006 

wrp3-39 3900450 3900600 0.004 

wrp3-96 96001172 96003009 0.002 

wrp3-83 8300906 8302279 0.017 

 Table 1. Error of approximate cost 

The graph below shows a comparison between the running times 
for the best known serial work [4] and our parallel 
implementation.  We tested on several graph sizes ranging from 
128 to 3168 vertices. Our analysis shows that our algorithm 
achieves speed-ups for bigger graph sizes (>600 vertices), with a 
maximum speed-up of 103x for the wrp3-83 graph with 3168 
vertices. 
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A common task in HPC is measuring the scalability (also referred 
to as the scaling efficiency) of an application. This measurement 
indicates how efficient an application is when using increasing 
numbers of parallel processing elements. The graph in figure 3 
shows that our problem is highly scalable for a problem size of 
2518 vertices (wrp3-96). 

 

4. CONCLUSION 
After careful analysis, we have noticed some subtle yet interesting 
points about our algorithm. Our algorithm is highly dynamic in 
the sense that it is not possible to predict the size of the solution at 
any point before actually computing it. Because of this, the work 
needed to be done at every step, which is proportional to the 
output size, cannot be predicted. This means that work 
distribution is highly irregular and this leads to load imbalance 
among processes which inhibits performance.  This uncertainty 
also contributes to a lot of irregular memory accesses which is 
also a performance bottleneck. Our algorithm is also adaptively 
refined, in the sense that it uses several steps to refine the solution 
for each vertex and then chooses the best solution among all the 
vertices. Algorithms that share the same characteristics as ours 
also share the problems of load imbalance and memory hierarchy. 

5. FUTURE WORK 
Our implementation suffers from the problems of load imbalance 
and irregular memory accesses due to the highly dynamic nature 
of our algorithm. Hence we wish to design a better load balancing 
mechanism and optimize the memory consumption of our 

implementation. Future work also includes making modifications 
to overlap more computation with data-communication. 

6. REFLECTIONS 
The project described in this paper was Venkata’s Blue Waters 
Student Internship project where he learned to incorporate several 
principles of computation and high-performance computing into 
his research. This section presents Venkata’s reflections about his 
internship and the impact that it has had on his current and future 
academic endeavors: My interest in computer science was ignited 
right from the introductory courses that I took my freshman year 
in college. I was fortunate to have received an opportunity to work 
with Prof. Yoon on this research project right from my freshman 
summer. At the end of the summer, we had the sequential and 
parallel versions of the code running on our local cluster. To our 
surprise, the parallel version was slower than its sequential 
counterpart in terms of run-time. After thorough investigation we 
concluded that our implementation had suffered from load 
balancing and thread divergence issues that hurt the performance 
a lot. We articulated that significant parts of our algorithm were 
more suitable to be handled by the CPU than the GPU and hence 
we started looking into distributed computing architectures like 
the Blue Waters Supercomputer. I then applied for the Blue 
Waters Internship Program and was fortunately accepted for the 
summer after my sophomore year in college. At the 2-week 
workshop, I learned parts of the C and FORTRAN programming 
languages in order to learn the basics of the parallel computing 
libraries OpenMP, CUDA, MPI, and OpenACC. I was taught how 
to use profiling and debugging tools like CPMAT and TAU. I was 
also exposed to parallel I/O libraries such as Lustre. Thanks to this 
experience, I am now confident using the Linux command line to 
navigate Blue Waters and write basic shell scripts to execute the 
code for my research. Having learned these skills, I am capable of 
using supercomputers for my research, which is at the intersection 
of engineering and computer science. This research experience 
has given me a glimpse of how computer scientists carry out 
research that continually shapes the world we live in. I am 
planning on pursuing a doctorate at a graduate school in the field 
of computational science, and I believe that these experiences will 
make me a good candidate in the application process. The Blue 
Waters Internship is definitely a turning point in my college career 
and my life in general, and having this opportunity to do cutting-
edge research with real-world implications is an invaluable 
experience. 
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Figure 4. A graphical flow chart representation of the parallel 
algorithm. 
 

Figure 5. A parallel approximation algorithm for GSP. 
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