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ABSTRACT

Bayesian networks may be utilized to infer genetic relations
among genes. This has proven useful in providing informa-
tion about how gene interactions influence life. However,
Bayesian network learning is slow as it is an NP-hard al-
gorithm. K2, a search space reduction, helps speed up the
algorithm but may introduce bias. The bias arises from the
fact that K2 enforces topologies which makes it impossible
for subsequent nodes to become parents of previous nodes
while the algorithm builds the network. To eliminate this
bias, multiple Bayesian networks must be computed to en-
sure every node has the chance to be a parent to every other
node. The purpose of this paper is to propose a hybrid algo-
rithm for generating consensus networks utilizing OpenMP
and MPI. This paper evaluates the parallelization of net-
work generation and provides commentary on learning and
implementing OpenMP and MPI. The OpenMP and MPI
accelerations are implemented in a single library and can be
switched on or off. These accelerations are for computing
multiple Bayesian networks simultaneously. Methods are
developed and tested to evaluate the results of the imple-
mented accelerations. The results show generating networks
across multiple cores results in a linear speed-up with neg-
ligible overhead. Distributing the generation of networks
across multiple machines also introduces linear speed-up, but
results in additional overhead.

1. INTRODUCTION

Inferring relations among genes requires a significant amount
of data. Bayesian networks may be used to correlate this
data and extract relationships among the genes [12]. We
do not know what this relationship is, but we do know it
has a high likelihood of existing. These relationships can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©@JOCSE, a supported publication of
the Shodor Education Foundation Inc.

DOI: https://doi.org/10.22369/issn.2153-4136/8/2/4

24 ISSN 2153-4136

Timothy W. O’Neil
The University of Akron
302 E Buchtel Ave
Akron, OH, 44325, United States
toneil@uakron.edu

Zhong-Hui Duan
The University of Akron
302 E Buchtel Ave
Akron, OH, 44325, United States
duan@uakron.edu

then be used to make testable hypotheses to determine how
gene interactions influence life in organisms or humans. As a
result, tests can be performed in the lab with more confidence
and a reduced chance of wasting time and resources.

This concept has been applied to smaller data sets and
shows promising results [12], however remains too slow to be
applied to a larger problem. It is our objective to decrease
the runtime required to form a network which may reveal
genetic interactions. Bayesian network learning, however,
is inherently slow because it is an NP-hard algorithm [4].
Search space reduction algorithms may be utilized to reduce
the computational complexity. K2 is a great example of a
search space reduction algorithm, and is our algorithm of
choice. However, it introduces a new problem. K2 restricts
the parent hierarchy of genes within the network [4], and
thus introduces bias in the computed relations. To achieve
high confidence in the generated networks, an abundance of
Bayesian networks need to be computed using random search
space restrictions. These random search space restrictions
(or topologies) remove the bias and provide results which
can be interpreted at various levels of confidence.

By eliminating one problem and introducing another, consen-
sus networks enable the ability of parallelization by requiring
multiple units of work rather than just one faster unit of
work. Other authors describe parallel implementations that
can increase the speed of Bayesian network learning [2] [8].
However, no libraries exist which compute multiple Bayesian
networks concurrently. This project examines the value of
Bayesian network learning within a parallel environment in
order to reduce the time needed to generate consensus net-
works using many topological inputs. This examination is
performed through implementation of the said algorithm,
exploring methods available such as OpenMP and MPI.
Results from running experiments with varying number of
cores and machines are examined and it is found our paral-
lelization has a positive impact. There are a couple caveats,
however, such as the over provisioning of resources which
leads to waste and potential introduction of latency from
cluster parallelism. When the resources are appropriate for
the problem size, OpenMP and MPI substantially reduce
the time to generate a consensus network. The reduction in
runtime appears to be linear, more so after accounting for
introduced latency and overhead.

This paper is an extension to the initial analysis performed
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on the algorithm and explains the thought processes behind
the implementation. The preceding publication shows why
the algorithm needs to be sped up, as an increase in samples
causes linear growth of the problem and introduction of
additional genes causes exponential growth of the problem
[5]. After reading this paper, the reader should have a sense
of why and how the parallelization was reasoned about and
implemented to achieve optimal efficiency.

2. BACKGROUND

2.1 Bayesian Networks

Bayesian networks capture qualitative relationships among
variables within a directed acyclic graph (or DAG). Nodes
within the DAG represent variables, and edges represent
dependencies between the variables [6] [11]. Bayesian net-
works have a search space which grows exponentially when
introducing new nodes and not placing restrictions on the
structure of the network. This complication can be overcome
by using the K2 algorithm. The K2 algorithm reduces the
computational cost of learning by imposing restraints on
parent node connections via topological ordering [4]. Here, a
topology refers to a hierarchical structure of parenthood that
the K2 algorithm will utilize to reduce overall computational
complexity while scoring data relationships. Restricting the
parent ordering, however, creates an issue of bias, which is
inherent within a constraint-based search space reduction
[12]. Sriram [12] proposed a solution to this issue by creating
a consensus network, or the combination of multiple Bayesian
networks derived from several topological inputs. To elim-
inate the bias created by these restraints, many randomly
generated topologies are used. By increasing the number
of topological inputs, the consensus network has a greater
chance of reflecting the true nature of the gene interactions
with higher levels of confidence.

2.2 OpenMP

OpenMP or (Open Multi-Processing) is a cross-platform,
multilingual application programming interface (API) which
enables shared-memory parallel programming on a single
machine. The OpenMP specification consists of compiler
directives and library functions used to parallelize portions
of a program’s control flow [10]. The most rudimentary
example of OpenMP would be to distribute a for-loop across
multiple threads.

An advisory board of top entities in computation controls
its specification [1] which can be implemented by various
compilers to target specific system capabilities and archi-
tectures. The specification includes language-specific APIs,
compiler directives, and standardized environment variables
[10]. The model of OpenMP is comparable to the fork-join
model, but provides additional convenience (cross-platform)
features through compiler directives. These directives consist
of, but are not limited to, barriers, critical regions, variable
atomicity, shared memory, and reductions [10].

OpenMP enables parallel code portability at a level which
would not be achievable while retaining an ideal code climate.
OpenMP, by nature allows simple and straight-forward par-
allelization of loops with a compiler directive that targets
the system for which the program is compiled on. Without
OpenMP, the program would have to include many different
libraries and routines to achieve parallel code across different
systems. The result of this would be a program which only
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works on a specific set of machines, or a code base which is
hard to maintain and debug when changes are made to the
underlying algorithm.

23 MPI

MPI (or Message Passing Interface) is a standard which
outlines network-routed (a)synchronous communication be-
tween machines [9]. MPI enables executing programs across
multiple machines in a cluster and passing messages between
them to schedule work or share information.

Execution of a program which utilizes MPI is most often
performed with a tool. This tool is responsible for forwarding
appropriate parameters to each program in order to specify
the information required for the processes to communicate.
Upon program start, the MPI execution environment must
be initialized using the MPI library methods [9]. The initial-
ization sequence results in augmented program arguments
(to remove arguments passed by the execution tool) and
the rank of the program in the MPI environment [9]. This
information allows the program to proceed as normal while
being a small part in a larger sum.

3. METHODOLOGY

Testing was performed on the Blue Waters petascale machine
at the University of Illinois at Urbana-Champaign. The
facility is maintained by Cray and consists of 22,640 Cray
XE6 machines and 3,072 XK7 machines, which are CPU-
only and GPU-accelerated machines respectively. The XE6
machines consist of two 16 core AMD processors with 64
GBs of RAM. The XK7 machines consist of a single 16 core
AMD processor with 32 GBs of RAM and a NVIDIA K20X
GPU [7].

Cray XE6 machines were used to perform all tests utilizing
purely synthetic data. OpenMP and MPI were implemented
by the Cray Compiler, Cray C version 8.3.10. The synthetic
data is in the form of a gene-by-sample matrix consisting of
the presence or absence of each gene within the sample. This
data was generated according to a model we defined. We
then ensured the result of the consensus network(s) matched
our model to validate functionality and evaluate a degree
of correctness for our algorithm. Each test was run five
times with the mean, standard deviation, and standard error
calculated to measure runtime consistency.

The library being used to run the tests is available online [3].
This library was implemented as described in this paper.

3.1 Processors

The first natural step in parallelizing computation is to
attempt to use multiple cores (or threads) simultaneously
on the machine. This can be done by running multiple
instances of the program, or by implementing code which
takes advantage of multiple threads. Analyzing the program
reveals a couple potential places for parallelization. There are
many for-loops which perform actions which are independent
from one another. The for-loops identified for inspection
are the generation of topologies and the iteration over the
topologies to generate networks.

The generation of topologies results in a a predetermined
number of topologies filled into an array. This operation
can be easily parallelized across multiple cores as they are
independent. The appropriate tool to perform this paral-
lelization is OpenMP. OpenMP was implemented with a
simple compiler directive which sped up computation.
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#pragma omp parallel for
for (...) {1}

Iterating over the topologies to generate networks can also
be parallelized. The creation of Bayesian networks are inde-
pendent from one another, and thus, networks can be asyn-
chronously generated. Implementation of this parallelization
is straight-forward as Bayesian network computation does
not mutate its data set. This prevents us from having to
replicate the memory and increase the space complexity of
the algorithm. OpenMP was implemented again as shown
above. Additionally, within the parallel for, the resulting
network must be appended to the consensus network. The
consensus network, however, is not thread-safe and must
be operated on within a critical section. A critical section
specifies that the code can only be executed on one thread
at a time.

#pragma omp critical

for (...) {1}

This ensures the networks are properly summed together,
otherwise, an addition may be lost. For example, if Thread
A and Thread B attempt to increment a variable at the same
time, they may both access the value before the other com-
mits the new value. This will result in a lost operation, as
the threads are not aware of one another.

To measure the resulting computational runtime decrease,
multiple tests were performed with varying number of proces-
sors. A single set of synthetic data was used which consisted
of 10 genes and 10,000 samples. Using an exclusively reserved
machine, tests were run by varying the number of processors
(up to 32) and measuring the algorithm performance for the
creation of 160 Bayesian networks per gene 1600 total). We
have reached the resource limits on the systems which we
have access to, and cannot test beyond 32 cores. The selec-
tion of 10 genes and 160 Bayesian networks was arbitrarily
chosen as sufficient means to measure computation time.

3.2 Cluster Parallelism

Distributing work across multiple machines requires a differ-
ent approach than that of OpenMP. OpenMP cannot share
memory across machines so it cannot be applied to this situ-
ation. MPI is optimal for this situation as it allows machines
to send messages back and forth to share memory and com-
municate their responsibilities and results. Distributing the
Bayesian network learning process across multiple machines
doesn’t make much sense because each step is dependent
on the previous, so the result would be a slower computa-
tion since calculations couldn’t happen in parallel and there
would be added network latency. The main candidate for
distribution would be the computation of a Bayesian network
(or the iteration over the topologies), because networks are
computed independent of one another and there is a large
backlog of networks which need to be computed. Distributing
the work with MPI is surprisingly simple, as the topologies
are randomly generated. This means there is no commu-
nication required prior to beginning computation. Upon
initialization, each machine must determine its rank and role
by augmenting the arguments, this may be done like so.

int main(int argc, char *xargv) {
int forkIndex = 0, forkSize = 1;
MPI_Init(&argc, &argv);
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MPI_Comm_rank (MPI_COMM_WORLD, &forkIndex);
MPI_Comm_size (MPI_COMM_WORLD, &forkSize);

.

Each machine can then determine how much work it needs
to do by dividing the number of requested topologies per
gene by the number of machines in the swarm.

int top_d = topologies / forkSize;
int top_r = topologies % forkSize;
if (forkIndex < top_r) ++top_d;
topologies = top_d;

When the machines complete their share of the computation
they communicate to coalesce the computed networks into a
consensus network. The master machine then saves the con-
sensus network to the disk and completes any other required
computations which are simple enough not to require being
distributed across machines.

Tests are conducted to measure the impact on runtime when
multiple machines are used. The same data is used from
the above (processors) test. Tests were run on dedicated
machines utilizing 16 processors and computing 60 Bayesian
networks per gene (600 total). The selection of 10 genes
and 60 Bayesian networks was arbitrarily chosen as sufficient
means to measure computation time.

4. RESULTS AND DISCUSSION

In the following tables, the standard deviation is represented
by the letter s and the standard error is denoted by se. This
standard deviation and error is in regards to the algorithm
runtime, not the accuracy of the algorithm.

4.1 Processors

When increasing the number of processors, the resulting
runtime decrease appears to be linear. The linear nature of
the results removes the necessity for further testing between
the number of cores tested. Figure 1 illustrates that as
the number of processors increase, the runtime decreases at
approximately the same rate. Exact results may be seen in
Table 1.

Table 1: Runtimes for the program across increasing
numbers of processors.

Cores | Mean Time | s se

1 396.348 3.192 | 1.427
2 269.023 0.530 | 0.237
4 137.359 0.629 | 0.281
8 76.169 0.220 | 0.090
16 40.359 0.307 | 0.137
32 22.172 0.144 | 0.064

This linear decrease is consistent with how OpenMP dis-
tributes its work. OpenMP distributes the task of an in-
dependent Bayesian network computation across multiple
threads simultaneously. These independent tasks are non-
blocking and do not lock one another, and thus have very
little contention. There is one lock after each computation
which appends the network to the consensus network, but is
negligible to the total time taken to compute the Bayesian
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Figure 1: Illustrates runtime decrease as the number
of processors increase. The decline is nearly linear.

networks. OpenMP results in such low runtime standard
error because it works with memory within the program and
requires no network communication like MPI. The reduction
of standard error as the number of threads increase may be
due to the kernel. The kernel is responsible for scheduling
threads and ensuring other work on the system gets done.
The increase in threads means there are more threads which
may go uninterrupted by the kernel scheduling something
else from the operating system.

4.2 Cluster Parallelism

The resulting runtime decrease also appears to be linear
while increasing the number of machines. However, as the
number of machines increase, overhead also increases. Figure
2 demonstrates that as the number of machines increase,
there is much more variation introduced and overhead in the
runtime.

Observing 64 machines and leading up to 64 machines, it can
be noted that the reduction in runtime becomes less and less
and then starts increasing. This increase in runtime happens
when the inflection point has been reached for the given set
of data. At some point, it takes longer to send the data over
the network than it would be to simply compute more data
on fewer machines. There are some potential modifications
which can be made to mitigate this overhead (such as asyn-
chronous coalescing), but it cannot be eliminated completely.
It is important to note that an increase in resources does not
necessarily mean an increase in performance, nor always one
for one; see Table 2 for test results.

The standard error generally increases with the increase
in machines, but this is not always true. There does not
seem to be a correlation between an increase or decrease
in machines with an increase or decrease in standard error,
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Figure 2: Illustrates runtime decrease as the number
of machines increase. The decline is nearly linear.

except for the general rule stated above. This is consistent
with the fact that networks are very unpredictable. Pings
may vary wildly depending on other network traffic and the
route which packets decide to take. Additionally, there may
be other noisy peers on the network hogging bandwidth and
causing slower transmissions. On clusters across the world
wide web, traffic may have to travel through geographical
displacement and suffer packet loss or increases in latency.
The only thing consistent with the standard error is that it
is not consistent.

5. CONCLUSION

By generating a consensus network out of many Bayesian
networks, researchers may screen and infer new gene interac-
tions. This allows researchers to feel more confident about
testing hypotheses in the lab, such that their resources and
time will not be wasted.

We have concluded that utilizing parallelization through
means of OpenMP and MPI substantially reduces the time
to generate a consensus network. However, as demonstrated
in the graphs above, an increase in resources must be tai-
lored to the problem at hand. Increasing the resources too
significantly becomes detrimental, resulting in costly waste;
see Table 2.

Future work may involve parallelizing the coalescing of con-
sensus networks in effort to reduce the overhead introduced
when increasing cluster parallelism. Additionally, all ma-
trix operations are currently done on a single-thread. These
operations (in some cases) contain thousands of rows and
columns being applied to an expensive mathematical function.
These operations are ideal for the GPU as it can perform the
arithmetic across several thousand of threads simultaneously.
As such, the motivation for this is that CUDA (or other
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Table 2: Runtimes for the program across increasing

numbers of machines.

Nodes | Mean Time | s se

1 102.204 0.361 | 0.161
2 53.451 0.272 | 0.122
4 28.656 0.383 | 0.171
8 17.8 1.812 | 0.810
16 10.917 0.327 | 0.134
32 7.862 0.462 | 0.207
64 6.259 0.444 | 0.198
128 6.739 0.430 | 0.193
256 7.904 1.110 | 0.496
512 7.241 0.246 | 0.110
1024 8.845 1.105 | 0.494

means of GPGPU acceleration) has the potential to speed
the algorithm up by several orders of magnitude.

6. REFLECTIONS

Working on this project gave me a massive amount of experi-
ence, which far surpassed what I thought it would. I gained
experience in professional writing for journal publications
and renewed my skills in proofreading. I also gained exposure
to a whole new aspect of project organization which I was
not used to: meetings with advisors, progress reports, and
demos. I feel like this has really helped foster my professional
identity and prepared me more for higher education and the
workforce. Additionally, I flexed my problem solving skills
while implementing the algorithm and begun refactoring.
The refactoring had to be done in such a fashion to allow for
parallelization. This presented some challenges because there
were also memory considerations to make things sharable
over the network (MPI). Overall, I learned many invaluable
skills which will be applied to my future education and work.
Notably, I performed my first publication [5] and gave a
presentation at the associated conference, then proceeded
to present a poster version of the paper at GLBIO 2016 to
draw attention to the work.
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